Ikha Magdalena, Nadhira Karima, Hany Q Rif’atin, Mohammad Farid
{"title":"Shallow Water Equations on modeling resonant waves evolution in a rough varying-width basin","authors":"Ikha Magdalena, Nadhira Karima, Hany Q Rif’atin, Mohammad Farid","doi":"10.1177/14750902231198279","DOIUrl":null,"url":null,"abstract":"Wave resonance is known to be extremely damaging to the coastal areas surrounding it, particularly if the wave has tsunami-like features, as it can amplify the height and energy of the wave propagating to the shorelines. The installation of a rough material on the bottom is one of the solutions to protect the coast from resonance. In this study, we examine the resonant wave evolution and its frequency in a triangular or rectangular semi-closed basin using a varying-width Shallow Water Model. The basins are assumed to feature a rough bottom topography as well as an uneven width. The resonant frequencies are obtained analytically and numerically using separation of variables and the finite volume method on a staggered grid, respectively. The computational approach is also used to assess the evolution and properties of resonant waves. The numerical scheme is validated by comparing simulation results to analytical solutions, which show relatively good agreement. Further, it is discovered that a greater friction coefficient induces a higher resonant frequency in both types of basins but results in a lower maximum resonant wave amplitude. It is also found that the resonant frequencies of both types of varying-width basins are greater than those of the prior study’s constant-width basins. However, the effect of the variations in the maximum width of the basin on its resonant frequency is found to be insignificant. Moreover, sensitivity analyses of the basin’s length and maximum basin depth are presented, with the maximum water depth being directly proportional to the maximum wave amplitudes and resonant frequencies of both basins. In contrast, the resonant frequency decreases and the maximum wave amplitude fluctuates as the length of the basin grows.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/14750902231198279","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Wave resonance is known to be extremely damaging to the coastal areas surrounding it, particularly if the wave has tsunami-like features, as it can amplify the height and energy of the wave propagating to the shorelines. The installation of a rough material on the bottom is one of the solutions to protect the coast from resonance. In this study, we examine the resonant wave evolution and its frequency in a triangular or rectangular semi-closed basin using a varying-width Shallow Water Model. The basins are assumed to feature a rough bottom topography as well as an uneven width. The resonant frequencies are obtained analytically and numerically using separation of variables and the finite volume method on a staggered grid, respectively. The computational approach is also used to assess the evolution and properties of resonant waves. The numerical scheme is validated by comparing simulation results to analytical solutions, which show relatively good agreement. Further, it is discovered that a greater friction coefficient induces a higher resonant frequency in both types of basins but results in a lower maximum resonant wave amplitude. It is also found that the resonant frequencies of both types of varying-width basins are greater than those of the prior study’s constant-width basins. However, the effect of the variations in the maximum width of the basin on its resonant frequency is found to be insignificant. Moreover, sensitivity analyses of the basin’s length and maximum basin depth are presented, with the maximum water depth being directly proportional to the maximum wave amplitudes and resonant frequencies of both basins. In contrast, the resonant frequency decreases and the maximum wave amplitude fluctuates as the length of the basin grows.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.