Innovative Approach to Evaluating the Approximate Solutions Concerning the Fractional Sharma-Tasso-Oliver Equation Comparison

Samer Yaseen, Raheam Al-Saphory
{"title":"Innovative Approach to Evaluating the Approximate Solutions Concerning the Fractional Sharma-Tasso-Oliver Equation Comparison","authors":"Samer Yaseen, Raheam Al-Saphory","doi":"10.31185/wjps.196","DOIUrl":null,"url":null,"abstract":"In this research, we introduce an improved analytical approximation technique for addressing the time-fractional Sharma-Tasso-Olever problem. To manage nonlinear fractional differential equations that emerge in numerous physical phenomena, we establish an alternative basis for the Laplace Residual Power Series approach (LRPSA). The generalized Taylor series equation and residual functions form the foundation of this strategy. The proposed solution yields positive outcomes. The dependability, efficiency, and simplicity of the suggested method are showcased across all categories of fractional nonlinear problems encountered in technological and scientific domains. Two examples are given to illustrate the effectiveness of the proposed approach in solving various kinds of fractional ordinary differential equations. A comparison with other techniques such as RPS, VIM, HPM reveals that our method produces favourable and efficient results.","PeriodicalId":167115,"journal":{"name":"Wasit Journal of Pure sciences","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wasit Journal of Pure sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31185/wjps.196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this research, we introduce an improved analytical approximation technique for addressing the time-fractional Sharma-Tasso-Olever problem. To manage nonlinear fractional differential equations that emerge in numerous physical phenomena, we establish an alternative basis for the Laplace Residual Power Series approach (LRPSA). The generalized Taylor series equation and residual functions form the foundation of this strategy. The proposed solution yields positive outcomes. The dependability, efficiency, and simplicity of the suggested method are showcased across all categories of fractional nonlinear problems encountered in technological and scientific domains. Two examples are given to illustrate the effectiveness of the proposed approach in solving various kinds of fractional ordinary differential equations. A comparison with other techniques such as RPS, VIM, HPM reveals that our method produces favourable and efficient results.
评价分数阶Sharma-Tasso-Oliver方程比较近似解的创新方法
在这项研究中,我们引入了一种改进的解析近似技术来解决时间分数Sharma-Tasso-Olever问题。为了处理在许多物理现象中出现的非线性分数阶微分方程,我们建立了拉普拉斯残差幂级数方法(LRPSA)的替代基础。广义泰勒级数方程和残差函数构成了这一策略的基础。提议的解决方案产生了积极的结果。该方法的可靠性、效率和简单性在技术和科学领域遇到的所有类别的分数阶非线性问题中都得到了展示。给出了两个算例,说明了该方法在求解各种分数阶常微分方程中的有效性。与RPS、VIM、HPM等技术的比较表明,该方法具有良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信