On $P$-spaces and $G_{\delta}$-sets in the absence of the Axiom of Choice

Pub Date : 2023-09-30 DOI:10.36045/j.bbms.230117
Kyriakos Keremedis, AliReza Olfati, Eliza Wajch
{"title":"On $P$-spaces and $G_{\\delta}$-sets in the absence of the Axiom of Choice","authors":"Kyriakos Keremedis, AliReza Olfati, Eliza Wajch","doi":"10.36045/j.bbms.230117","DOIUrl":null,"url":null,"abstract":"A $P$-space is a topological space whose every $G_{\\delta}$-set is open. In this article, basic properties of $P$-spaces are investigated in the absence of the Axiom of Choice. New weaker forms of the Axiom of Choice, all relevant to $P$-spaces or to countable intersections of $G_{\\delta}$-sets, are introduced for applications. Special subrings of rings of continuous real functions are applied. New notions of a quasi Baire space and a strongly (quasi) Baire space are introduced. Several independence results are obtained. For instance, it is shown in $\\mathbf{ZF}$ that if $G_{\\delta}$-modifications of Tychonoff spaces are $P$-spaces, then every denumerable family of denumerable sets has a multiple choice function. In $\\mathbf{ZF}$, a zero-dimensional subspace of $\\mathbb{R}$ may fail to be strongly zero-dimensional, and countable intersections of $G_{\\delta}$-sets of $\\mathbb{R}$ may fail to be $G_{\\delta}$-sets. New open problems are posed. Partial answers to some of them are given.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36045/j.bbms.230117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A $P$-space is a topological space whose every $G_{\delta}$-set is open. In this article, basic properties of $P$-spaces are investigated in the absence of the Axiom of Choice. New weaker forms of the Axiom of Choice, all relevant to $P$-spaces or to countable intersections of $G_{\delta}$-sets, are introduced for applications. Special subrings of rings of continuous real functions are applied. New notions of a quasi Baire space and a strongly (quasi) Baire space are introduced. Several independence results are obtained. For instance, it is shown in $\mathbf{ZF}$ that if $G_{\delta}$-modifications of Tychonoff spaces are $P$-spaces, then every denumerable family of denumerable sets has a multiple choice function. In $\mathbf{ZF}$, a zero-dimensional subspace of $\mathbb{R}$ may fail to be strongly zero-dimensional, and countable intersections of $G_{\delta}$-sets of $\mathbb{R}$ may fail to be $G_{\delta}$-sets. New open problems are posed. Partial answers to some of them are given.
分享
查看原文
在没有选择公理的$P$-空间和$G_{\delta}$-集合上
一个$P$-空间是一个拓扑空间,它的每个$G_{\delta}$-集合都是开的。在没有选择公理的情况下,研究了$P$-空间的基本性质。为了应用,引入了选择公理的新的弱形式,它们都与$P$-空间或$G_{\delta}$-集合的可数交集有关。应用了连续实函数环的特殊子函数。引入了拟贝尔空间和强(拟)贝尔空间的新概念。得到了几个独立的结果。例如,在$\mathbf{ZF}$中表明,如果Tychonoff空间的$G_{\delta}$-修正是$P$-空间,则每一个可可数集合的可可数族都有一个选择函数。在$\mathbf{ZF}$中,$\mathbb{R}$的零维子空间不能是强零维的,$\mathbb{R}$的$G_{\delta}$-集合的可数交集不能是$G_{\delta}$-集合。新的开放问题被提出。本文给出了其中一些问题的部分答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信