Reentry Risk and Safety Assessment of Spacecraft Debris Based on Machine Learning

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hu Gao, Zhihui Li, Depeng Dang, Jingfan Yang, Ning Wang
{"title":"Reentry Risk and Safety Assessment of Spacecraft Debris Based on Machine Learning","authors":"Hu Gao, Zhihui Li, Depeng Dang, Jingfan Yang, Ning Wang","doi":"10.1007/s42405-023-00652-x","DOIUrl":null,"url":null,"abstract":"Uncontrolled spacecraft will disintegrate and generate a large amount of debris in the reentry process. Ablative debris may cause potential risks to the safety of human life and property on the ground. Therefore, predicting the landing points of spacecraft debris and forecasting the degree of risk of waste to human life and property is very important. In view that it is difficult to predict the reentry process and the reentry point in advance, the debris generated from reentry disintegration may cause ground damage for the uncontrolled space vehicle on the expiration of service. In this paper, we adopt the object-oriented approach to consider the spacecraft and its disintegrated components as consisting of simple basic geometric models and introduce three machine learning models: the support vector regression (SVR), decision tree regression (DTR), and multilayer perceptron (MLP) to predict the velocity, longitude, and latitude of spacecraft debris landing points for the first time. Then, we compare the prediction accuracy of the three models. Furthermore, we define the reentry risk and the degree of danger, and we calculate the risk level for each spacecraft debris and make warnings accordingly. The experimental results show that the proposed method can obtain high-accuracy prediction results in at least 10 s and make safety-level warning more real-time.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42405-023-00652-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Uncontrolled spacecraft will disintegrate and generate a large amount of debris in the reentry process. Ablative debris may cause potential risks to the safety of human life and property on the ground. Therefore, predicting the landing points of spacecraft debris and forecasting the degree of risk of waste to human life and property is very important. In view that it is difficult to predict the reentry process and the reentry point in advance, the debris generated from reentry disintegration may cause ground damage for the uncontrolled space vehicle on the expiration of service. In this paper, we adopt the object-oriented approach to consider the spacecraft and its disintegrated components as consisting of simple basic geometric models and introduce three machine learning models: the support vector regression (SVR), decision tree regression (DTR), and multilayer perceptron (MLP) to predict the velocity, longitude, and latitude of spacecraft debris landing points for the first time. Then, we compare the prediction accuracy of the three models. Furthermore, we define the reentry risk and the degree of danger, and we calculate the risk level for each spacecraft debris and make warnings accordingly. The experimental results show that the proposed method can obtain high-accuracy prediction results in at least 10 s and make safety-level warning more real-time.
基于机器学习的航天器碎片再入风险与安全评估
失控的航天器在再入过程中会解体并产生大量碎片。烧蚀碎片可能对地面上的人类生命和财产安全造成潜在的危险。因此,预测航天器碎片的着陆点,预测废弃物对人类生命财产的危害程度,具有十分重要的意义。考虑到再入过程和再入点难以提前预测,再入解体产生的碎片可能会对服役期满的非控制空间飞行器造成地面损伤。本文采用面向对象的方法,将航天器及其解体部件视为由简单的基本几何模型组成,首次引入支持向量回归(SVR)、决策树回归(DTR)和多层感知器(MLP)三种机器学习模型,对航天器碎片着陆点的速度、经度和纬度进行预测。然后,比较了三种模型的预测精度。在此基础上,定义了航天器碎片的再入风险和危险程度,计算了航天器碎片的风险等级,并进行了相应的预警。实验结果表明,该方法可以在至少10 s内获得高精度的预测结果,提高了安全等级预警的实时性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信