Error estimates with low-order polynomial dependence for the fully-discrete finite element Invariant Energy Quadratization scheme of the Allen-Cahn Equation

Guo-Dong Zhang, Xiaofeng Yang
{"title":"Error estimates with low-order polynomial dependence for the fully-discrete finite element Invariant Energy Quadratization scheme of the Allen-Cahn Equation","authors":"Guo-Dong Zhang, Xiaofeng Yang","doi":"10.1142/s0218202523500537","DOIUrl":null,"url":null,"abstract":"In this paper, for the Allen–Cahn equation, we obtain the error estimate of the temporal semi-discrete scheme, and the fully-discrete finite element numerical scheme, both of which are based on the invariant energy quadratization (IEQ) time-marching strategy. We establish the relationship between the [Formula: see text]-error bound and the [Formula: see text]-stabilities of the numerical solution. Then, by converting the numerical schemes to a form compatible with the original format of the Allen–Cahn equation, using mathematical induction, the superconvergence property of nonlinear terms, and the spectrum argument, the optimal error estimates that only depends on the low-order polynomial degree of [Formula: see text] instead of [Formula: see text] for both of the semi and fully-discrete schemes are derived. Numerical experiment also validates our theoretical convergence analysis.","PeriodicalId":18311,"journal":{"name":"Mathematical Models and Methods in Applied Sciences","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models and Methods in Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218202523500537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, for the Allen–Cahn equation, we obtain the error estimate of the temporal semi-discrete scheme, and the fully-discrete finite element numerical scheme, both of which are based on the invariant energy quadratization (IEQ) time-marching strategy. We establish the relationship between the [Formula: see text]-error bound and the [Formula: see text]-stabilities of the numerical solution. Then, by converting the numerical schemes to a form compatible with the original format of the Allen–Cahn equation, using mathematical induction, the superconvergence property of nonlinear terms, and the spectrum argument, the optimal error estimates that only depends on the low-order polynomial degree of [Formula: see text] instead of [Formula: see text] for both of the semi and fully-discrete schemes are derived. Numerical experiment also validates our theoretical convergence analysis.
Allen-Cahn方程全离散有限元不变能量二次化格式的低阶多项式依赖误差估计
本文针对Allen-Cahn方程,给出了基于不变能量二次化(IEQ)时间推进策略的时间半离散格式和全离散有限元数值格式的误差估计。建立了数值解的[公式:见文]误差界与[公式:见文]稳定性之间的关系。然后,通过将数值格式转换为与Allen-Cahn方程原始格式兼容的形式,利用数学归纳法、非线性项的超收敛性质和谱参数,导出了半离散和全离散格式仅依赖于[公式:见文]的低阶多项式度而不是[公式:见文]的最优误差估计。数值实验也验证了理论的收敛性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信