A second-order fully-balanced structure-preserving variational discretization scheme for the Cahn-Hilliard Navier-Stokes system

A. Brunk, H. Egger, O. Habrich, M. Lukacova-Medvid'ova
{"title":"A second-order fully-balanced structure-preserving variational discretization scheme for the Cahn-Hilliard Navier-Stokes system","authors":"A. Brunk, H. Egger, O. Habrich, M. Lukacova-Medvid'ova","doi":"10.1142/s0218202523500562","DOIUrl":null,"url":null,"abstract":"We propose and analyze a structure-preserving space-time variational discretization method for the Cahn–Hilliard–Navier–Stokes system. Uniqueness and stability for the discrete problem is established in the presence of concentration-dependent mobility and viscosity parameters by means of the relative energy estimates and order optimal convergence rates are established for all variables using balanced approximation spaces and relaxed regularity conditions on the solution. Numerical tests are presented to demonstrate the proposed method is fully practical and yields the predicted convergence rates. The discrete stability estimates developed in this paper may also be used to analyse other discretization schemes, which is briefly outlined in the discussion.","PeriodicalId":18311,"journal":{"name":"Mathematical Models and Methods in Applied Sciences","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models and Methods in Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218202523500562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose and analyze a structure-preserving space-time variational discretization method for the Cahn–Hilliard–Navier–Stokes system. Uniqueness and stability for the discrete problem is established in the presence of concentration-dependent mobility and viscosity parameters by means of the relative energy estimates and order optimal convergence rates are established for all variables using balanced approximation spaces and relaxed regularity conditions on the solution. Numerical tests are presented to demonstrate the proposed method is fully practical and yields the predicted convergence rates. The discrete stability estimates developed in this paper may also be used to analyse other discretization schemes, which is briefly outlined in the discussion.
Cahn-Hilliard Navier-Stokes系统的二阶全平衡保结构变分离散化格式
提出并分析了Cahn-Hilliard-Navier-Stokes系统的一种结构保持的时空变分离散化方法。利用相对能量估计建立了离散问题在随浓度变化的迁移率和黏度参数存在下的唯一性和稳定性,并利用平衡逼近空间和松弛正则性条件建立了所有变量的阶最优收敛速率。通过数值实验证明了该方法的实用性,并得到了预期的收敛速度。文中提出的离散稳定性估计也可用于分析其他离散化方案,讨论中简要概述了这些方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信