Jie Wang, Minshuo Chen, Tuo Zhao, Wenjing Liao, Yao Xie
{"title":"A manifold two-sample test study: integral probability metric with neural networks","authors":"Jie Wang, Minshuo Chen, Tuo Zhao, Wenjing Liao, Yao Xie","doi":"10.1093/imaiai/iaad018","DOIUrl":null,"url":null,"abstract":"Abstract Two-sample tests are important areas aiming to determine whether two collections of observations follow the same distribution or not. We propose two-sample tests based on integral probability metric (IPM) for high-dimensional samples supported on a low-dimensional manifold. We characterize the properties of proposed tests with respect to the number of samples $n$ and the structure of the manifold with intrinsic dimension $d$. When an atlas is given, we propose a two-step test to identify the difference between general distributions, which achieves the type-II risk in the order of $n^{-1/\\max \\{d,2\\}}$. When an atlas is not given, we propose Hölder IPM test that applies for data distributions with $(s,\\beta )$-Hölder densities, which achieves the type-II risk in the order of $n^{-(s+\\beta )/d}$. To mitigate the heavy computation burden of evaluating the Hölder IPM, we approximate the Hölder function class using neural networks. Based on the approximation theory of neural networks, we show that the neural network IPM test has the type-II risk in the order of $n^{-(s+\\beta )/d}$, which is in the same order of the type-II risk as the Hölder IPM test. Our proposed tests are adaptive to low-dimensional geometric structure because their performance crucially depends on the intrinsic dimension instead of the data dimension.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imaiai/iaad018","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Two-sample tests are important areas aiming to determine whether two collections of observations follow the same distribution or not. We propose two-sample tests based on integral probability metric (IPM) for high-dimensional samples supported on a low-dimensional manifold. We characterize the properties of proposed tests with respect to the number of samples $n$ and the structure of the manifold with intrinsic dimension $d$. When an atlas is given, we propose a two-step test to identify the difference between general distributions, which achieves the type-II risk in the order of $n^{-1/\max \{d,2\}}$. When an atlas is not given, we propose Hölder IPM test that applies for data distributions with $(s,\beta )$-Hölder densities, which achieves the type-II risk in the order of $n^{-(s+\beta )/d}$. To mitigate the heavy computation burden of evaluating the Hölder IPM, we approximate the Hölder function class using neural networks. Based on the approximation theory of neural networks, we show that the neural network IPM test has the type-II risk in the order of $n^{-(s+\beta )/d}$, which is in the same order of the type-II risk as the Hölder IPM test. Our proposed tests are adaptive to low-dimensional geometric structure because their performance crucially depends on the intrinsic dimension instead of the data dimension.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.