{"title":"The Vlasov–Poisson–Landau system in the weakly collisional regime","authors":"Sanchit Chaturvedi, Jonathan Luk, Toan T. Nguyen","doi":"10.1090/jams/1014","DOIUrl":null,"url":null,"abstract":"Consider the Vlasov–Poisson–Landau system with Coulomb potential in the weakly collisional regime on a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\"application/x-tex\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-torus, i.e. <disp-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartLayout 1st Row partial-differential Subscript t Baseline upper F left-parenthesis t comma x comma v right-parenthesis plus v Subscript i Baseline partial-differential Subscript x Sub Subscript i Subscript Baseline upper F left-parenthesis t comma x comma v right-parenthesis plus upper E Subscript i Baseline left-parenthesis t comma x right-parenthesis partial-differential Subscript v Sub Subscript i Subscript Baseline upper F left-parenthesis t comma x comma v right-parenthesis equals nu upper Q left-parenthesis upper F comma upper F right-parenthesis left-parenthesis t comma x comma v right-parenthesis comma 2nd Row upper E left-parenthesis t comma x right-parenthesis equals nabla normal upper Delta Superscript negative 1 Baseline left-parenthesis integral Underscript double-struck upper R cubed Endscripts upper F left-parenthesis t comma x comma v right-parenthesis normal d v minus integral minus Subscript double-struck upper T cubed Baseline integral Underscript double-struck upper R cubed Endscripts upper F left-parenthesis t comma x comma v right-parenthesis normal d v normal d x right-parenthesis comma EndLayout\"> <mml:semantics> <mml:mtable columnalign=\"right left right left right left right left right left right left\" rowspacing=\"3pt\" columnspacing=\"0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em\" side=\"left\" displaystyle=\"true\"> <mml:mtr> <mml:mtd> <mml:msub> <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mi>F</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>v</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>v</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:msub> <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> </mml:msub> <mml:mi>F</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>v</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>E</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:msub> <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:msub> <mml:mi>v</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> </mml:msub> <mml:mi>F</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>v</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>ν<!-- ν --></mml:mi> <mml:mi>Q</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>F</mml:mi> <mml:mo>,</mml:mo> <mml:mi>F</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>v</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mi>E</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:msup> <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:mrow> </mml:msub> <mml:mi>F</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>v</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mspace width=\"thinmathspace\" /> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">d</mml:mi> </mml:mrow> <mml:mi>v</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>∫<!-- ∫ --></mml:mo> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mpadded width=\"0\" lspace=\"-1width\"> <mml:mo>−<!-- − --></mml:mo> </mml:mpadded> </mml:mrow> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">T</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:mrow> </mml:msub> <mml:msub> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:mrow> </mml:msub> <mml:mi>F</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>v</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mspace width=\"thinmathspace\" /> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">d</mml:mi> </mml:mrow> <mml:mi>v</mml:mi> <mml:mspace width=\"thinmathspace\" /> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">d</mml:mi> </mml:mrow> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> </mml:mtable> <mml:annotation encoding=\"application/x-tex\">\\begin{align*} \\partial _t F(t,x,v) + v_i \\partial _{x_i} F(t,x,v) + E_i(t,x) \\partial _{v_i} F(t,x,v) = \\nu Q(F,F)(t,x,v),\\\\ E(t,x) = \\nabla \\Delta ^{-1} (\\int _{\\mathbb R^3} F(t,x,v)\\, \\mathrm {d} v - {{\\int }\\llap {-}}_{\\mathbb T^3} \\int _{\\mathbb R^3} F(t,x,v)\\, \\mathrm {d} v \\, \\mathrm {d} x), \\end{align*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"nu much-less-than 1\"> <mml:semantics> <mml:mrow> <mml:mi>ν<!-- ν --></mml:mi> <mml:mo>≪<!-- ≪ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\nu \\ll 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We prove that for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon greater-than 0\"> <mml:semantics> <mml:mrow> <mml:mi>ϵ<!-- ϵ --></mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\epsilon >0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> sufficiently small (but independent of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"nu\"> <mml:semantics> <mml:mi>ν<!-- ν --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\nu</mml:annotation> </mml:semantics> </mml:math> </inline-formula>), initial data which are <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis epsilon nu Superscript 1 slash 3 Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>ϵ<!-- ϵ --></mml:mi> <mml:msup> <mml:mi>ν<!-- ν --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>1</mml:mn> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(\\epsilon \\nu ^{1/3})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Sobolev space perturbations from the global Maxwellians lead to global-in-time solutions which converge to the global Maxwellians as <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t right-arrow normal infinity\"> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">t\\to \\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The solutions exhibit uniform-in-<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"nu\"> <mml:semantics> <mml:mi>ν<!-- ν --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\nu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> Landau damping and enhanced dissipation. Our main result is analogous to an earlier result of Bedrossian for the Vlasov–Poisson–Fokker–Planck equation with the same threshold. However, unlike in the Fokker–Planck case, the linear operator cannot be inverted explicitly due to the complexity of the Landau collision operator. For this reason, we develop an energy-based framework, which combines Guo’s weighted energy method with the hypocoercive energy method and the commuting vector field method. The proof also relies on pointwise resolvent estimates for the linearized density equation.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"1 1","pages":"0"},"PeriodicalIF":3.5000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/jams/1014","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Consider the Vlasov–Poisson–Landau system with Coulomb potential in the weakly collisional regime on a 33-torus, i.e. ∂tF(t,x,v)+vi∂xiF(t,x,v)+Ei(t,x)∂viF(t,x,v)=νQ(F,F)(t,x,v),E(t,x)=∇Δ−1(∫R3F(t,x,v)dv−∫−T3∫R3F(t,x,v)dvdx),\begin{align*} \partial _t F(t,x,v) + v_i \partial _{x_i} F(t,x,v) + E_i(t,x) \partial _{v_i} F(t,x,v) = \nu Q(F,F)(t,x,v),\\ E(t,x) = \nabla \Delta ^{-1} (\int _{\mathbb R^3} F(t,x,v)\, \mathrm {d} v - {{\int }\llap {-}}_{\mathbb T^3} \int _{\mathbb R^3} F(t,x,v)\, \mathrm {d} v \, \mathrm {d} x), \end{align*} with ν≪1\nu \ll 1. We prove that for ϵ>0\epsilon >0 sufficiently small (but independent of ν\nu), initial data which are O(ϵν1/3)O(\epsilon \nu ^{1/3})-Sobolev space perturbations from the global Maxwellians lead to global-in-time solutions which converge to the global Maxwellians as t→∞t\to \infty. The solutions exhibit uniform-in-ν\nu Landau damping and enhanced dissipation. Our main result is analogous to an earlier result of Bedrossian for the Vlasov–Poisson–Fokker–Planck equation with the same threshold. However, unlike in the Fokker–Planck case, the linear operator cannot be inverted explicitly due to the complexity of the Landau collision operator. For this reason, we develop an energy-based framework, which combines Guo’s weighted energy method with the hypocoercive energy method and the commuting vector field method. The proof also relies on pointwise resolvent estimates for the linearized density equation.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.