{"title":"As ternas pitagóricas e sua relação com os números congruentes: possibilidades de uso da História da Matemática em sala de aula","authors":"Inocêncio Fernandes Balieiro Filho, Jaime Edmundo Apaza Rodriguez, Edson Donizete de Carvalho","doi":"10.30938/bocehm.v10i30.9910","DOIUrl":null,"url":null,"abstract":"Neste artigo, por meio de uma revisão histórica, estabelecemos uma discussão sobre dois problemas clássicos e paralelos: as ternas pitagóricas e os números congruentes. Em diferentes momentos históricos, foi possível encontrarmos referências às ternas pitagóricas e aos números congruentes. O primeiro registro histórico de algumas ternas aparece na tabuleta babilônica Plimpton 322. Em seguida, nos textos do Sulvasutras, vemos que Baudhayana, Manava, Apastamba e Katyayana já conheciam o teorema de Pitágoras e obtiveram algumas ternas mediante o teorema da diagonal. Por meio dos relatos de Proclus, conhecemos os procedimentos de Pitágoras e Platão que possibilitaram gerar algumas ternas e a solução para gerar todas as ternas aparece em Os elementos de Euclides. Na Aritmética de Diofanto encontramos o primeiro exemplo de ternas em números racionais. Os primeiros estudos sobre as ternas pitagóricas e triângulos racionais aparecem nos estudos de Brahmagupta, cujos resultados são reconsiderados por Mahavira, Bhaskara II e Karavinda Swami. Nas investigações de al-Khazin sobre ternas primitivas encontramos uma parametrização para gerá-las. Fermat estabeleceu que a área de um triângulo retângulo cujos lados são inteiros não é um quadrado racional e, em 1983, Tunnell determinou uma solução parcial para o problema dos números congruentes. Os resultados obtidos por meio da revisão histórica sobre o tema nos permitiu construir um material que pode ser utilizado como um subsídio para o uso da História da Matemática em sala de aula, em diferentes níveis de ensino.","PeriodicalId":52692,"journal":{"name":"Boletim Cearense de Educacao e Historia da Matematica","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Cearense de Educacao e Historia da Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30938/bocehm.v10i30.9910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Neste artigo, por meio de uma revisão histórica, estabelecemos uma discussão sobre dois problemas clássicos e paralelos: as ternas pitagóricas e os números congruentes. Em diferentes momentos históricos, foi possível encontrarmos referências às ternas pitagóricas e aos números congruentes. O primeiro registro histórico de algumas ternas aparece na tabuleta babilônica Plimpton 322. Em seguida, nos textos do Sulvasutras, vemos que Baudhayana, Manava, Apastamba e Katyayana já conheciam o teorema de Pitágoras e obtiveram algumas ternas mediante o teorema da diagonal. Por meio dos relatos de Proclus, conhecemos os procedimentos de Pitágoras e Platão que possibilitaram gerar algumas ternas e a solução para gerar todas as ternas aparece em Os elementos de Euclides. Na Aritmética de Diofanto encontramos o primeiro exemplo de ternas em números racionais. Os primeiros estudos sobre as ternas pitagóricas e triângulos racionais aparecem nos estudos de Brahmagupta, cujos resultados são reconsiderados por Mahavira, Bhaskara II e Karavinda Swami. Nas investigações de al-Khazin sobre ternas primitivas encontramos uma parametrização para gerá-las. Fermat estabeleceu que a área de um triângulo retângulo cujos lados são inteiros não é um quadrado racional e, em 1983, Tunnell determinou uma solução parcial para o problema dos números congruentes. Os resultados obtidos por meio da revisão histórica sobre o tema nos permitiu construir um material que pode ser utilizado como um subsídio para o uso da História da Matemática em sala de aula, em diferentes níveis de ensino.