{"title":"Deep Generative Modeling Based on VAE-GAN for 3D Indoor Scene Synthesis","authors":"Shuai Li, Hongjun Li","doi":"10.1155/2023/3368647","DOIUrl":null,"url":null,"abstract":"With the advancement of virtual reality and 3D game technology, the demand for high-quality 3D indoor scene generation has surged. Addressing this need, this paper presents a method leveraging a VAE-GAN-based framework to conquer two primary challenges in 3D scene representation and deep generative networks. First, we introduce a matrix representation to encode fine-grained object attributes, alongside a complete graph to implicitly capture object spatial relations—effectively encapsulating both local and global scene structures. Second, we devise a unique generative framework based on VAE-GAN and the Bayesian optimization. This framework learns a Gaussian distribution of encoded object attributes through a VAE-GAN network, allowing for sampling and decoding of the distribution to generate new object attributes. Subsequently, a U-Net is employed to learn spatial relations between objects. Lastly, the Bayesian optimization module amalgamates the generated object attributes, spatial relations, and priors learned from data, conducting global optimization to generate a logical scene layout. Experimental results on a large-scale 3D indoor scene dataset substantiate that our method effectively learns inter-object relations and generates diverse and plausible indoor scenes. Comparative experiments and user studies further validate that our method surpasses the current state-of-the-art techniques in indoor scene generation and is comparable to real training scenes.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/3368647","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the advancement of virtual reality and 3D game technology, the demand for high-quality 3D indoor scene generation has surged. Addressing this need, this paper presents a method leveraging a VAE-GAN-based framework to conquer two primary challenges in 3D scene representation and deep generative networks. First, we introduce a matrix representation to encode fine-grained object attributes, alongside a complete graph to implicitly capture object spatial relations—effectively encapsulating both local and global scene structures. Second, we devise a unique generative framework based on VAE-GAN and the Bayesian optimization. This framework learns a Gaussian distribution of encoded object attributes through a VAE-GAN network, allowing for sampling and decoding of the distribution to generate new object attributes. Subsequently, a U-Net is employed to learn spatial relations between objects. Lastly, the Bayesian optimization module amalgamates the generated object attributes, spatial relations, and priors learned from data, conducting global optimization to generate a logical scene layout. Experimental results on a large-scale 3D indoor scene dataset substantiate that our method effectively learns inter-object relations and generates diverse and plausible indoor scenes. Comparative experiments and user studies further validate that our method surpasses the current state-of-the-art techniques in indoor scene generation and is comparable to real training scenes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.