Comparison between laser and TIG welding of electron beam melted Ti6Al4V parts

IF 2.4 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Murat Sen, Mustafa Kurt
{"title":"Comparison between laser and TIG welding of electron beam melted Ti6Al4V parts","authors":"Murat Sen, Mustafa Kurt","doi":"10.1515/mt-2023-0149","DOIUrl":null,"url":null,"abstract":"Abstract A large number of metal parts specific to the aviation, energy, and biomedical industries are produced by the electron beam melting (EBM) method, which is one of the powder bed additive manufacturing techniques. The limited build volume of EBM machines does not allow the production of parts in the desired dimensions. One way to overcome this limitation is to weld small size additive manufactured parts. In this study, EBMed Ti6Al4V tensile specimens were joined by laser (LBW) and tungsten inert gas (TIG) welding. Welding morphologies, microstructures, and mechanical properties of joints were investigated. The main defects in the samples are pore formation and insufficient penetration. The weld zones of TIG samples contain a higher amount of pores than laser samples, and these pores are distributed over the entire area of the weld. The pores are less than 200 µm in diameter. TIG welded samples exhibited higher mechanical properties than laser welded samples. The highest microhardness was measured in the weld zone. Microhardness of laser welded samples are higher than TIG welded samples. While the welding regions of TIG welded samples consist of coarse and acicular α and α + β structures, laser welded samples consist of thin and acicular α′ structure.","PeriodicalId":18231,"journal":{"name":"Materials Testing","volume":"78 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Testing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mt-2023-0149","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract A large number of metal parts specific to the aviation, energy, and biomedical industries are produced by the electron beam melting (EBM) method, which is one of the powder bed additive manufacturing techniques. The limited build volume of EBM machines does not allow the production of parts in the desired dimensions. One way to overcome this limitation is to weld small size additive manufactured parts. In this study, EBMed Ti6Al4V tensile specimens were joined by laser (LBW) and tungsten inert gas (TIG) welding. Welding morphologies, microstructures, and mechanical properties of joints were investigated. The main defects in the samples are pore formation and insufficient penetration. The weld zones of TIG samples contain a higher amount of pores than laser samples, and these pores are distributed over the entire area of the weld. The pores are less than 200 µm in diameter. TIG welded samples exhibited higher mechanical properties than laser welded samples. The highest microhardness was measured in the weld zone. Microhardness of laser welded samples are higher than TIG welded samples. While the welding regions of TIG welded samples consist of coarse and acicular α and α + β structures, laser welded samples consist of thin and acicular α′ structure.
电子束熔化Ti6Al4V零件激光与TIG焊接的比较
电子束熔化(EBM)是粉末床增材制造技术的一种,用于航空、能源和生物医药等行业的大量金属零件的生产。EBM机器有限的制造体积不允许生产所需尺寸的零件。克服这一限制的一种方法是焊接小尺寸的增材制造零件。本研究采用激光(LBW)和钨惰性气体(TIG)焊接方法连接EBMed Ti6Al4V拉伸试样。研究了接头的焊接形貌、显微组织和力学性能。样品的主要缺陷是孔隙形成和渗透不足。TIG试样的焊缝区比激光试样含有更多的气孔,并且这些气孔分布在整个焊缝区域。孔隙直径小于200µm。TIG焊接样品的力学性能优于激光焊接样品。焊缝区显微硬度最高。激光焊接试样的显微硬度高于TIG焊接试样。TIG焊接试样的焊接区为粗晶针状α和α + β组织,而激光焊接试样的焊接区为细晶针状α '组织。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Testing
Materials Testing 工程技术-材料科学:表征与测试
CiteScore
4.20
自引率
36.00%
发文量
165
审稿时长
4-8 weeks
期刊介绍: Materials Testing is a SCI-listed English language journal dealing with all aspects of material and component testing with a special focus on transfer between laboratory research into industrial application. The journal provides first-hand information on non-destructive, destructive, optical, physical and chemical test procedures. It contains exclusive articles which are peer-reviewed applying respectively high international quality criterions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信