{"title":"Deep Neural Networks Guided Ensemble Learning for Point Estimation","authors":"Tianyu Zhan, Haoda Fu, Jian Kang","doi":"10.1080/19466315.2023.2260776","DOIUrl":null,"url":null,"abstract":"AbstractIn modern statistics, interests shift from pursuing the uniformly minimum variance unbiased estimator to reducing mean squared error (MSE) or residual squared error. Shrinkage-based estimation and regression methods offer better prediction accuracy and improved interpretation. However, the characterization of such optimal statistics in terms of minimizing MSE remains open and challenging in many problems, for example, estimating the treatment effect in adaptive clinical trials with pre-planned modifications to design aspects based on accumulated data. From an alternative perspective, we propose a deep neural network based automatic method to construct an improved estimator from existing ones. Theoretical properties are studied to provide guidance on applicability of our estimator to seek potential improvement. Simulation studies demonstrate that the proposed method has considerable finite-sample efficiency gain compared to several common estimators. In the Adaptive COVID-19 Treatment Trial (ACTT) as a motivating example, our ensemble estimator essentially contributes to a more ethical and efficient adaptive clinical trial with fewer patients enrolled. The proposed framework can be generally applied to various statistical problems, and can serve as a reference measure to guide statistical research.Keywords: Deep learningEfficiencyImproved statisticsDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. Supplemental MaterialsSupplementary Materials including Appendices, Tables and Figures referenced in this article are available online. The R code and a help file to replicate results in the main article are available at https://github.com/tian-yu-zhan/DNN_Point_Estimation.This manuscript was supported by AbbVie Inc. AbbVie participated in the review and approval of the content. Tianyu Zhan is employed by AbbVie Inc., Haoda Fu is employed by Eli Lilly and Company, and Jian Kang is Professor in the Department of Biostatistics at the University of Michigan, Ann Arbor. Kang’s research was partially supported by NIH R01 GM124061 and R01 MH105561. All authors may own AbbVie stock.Conflict of InterestNo potential competing interest was reported by the authors.AcknowledgementsThe authors thank the editorial board and reviewers for their constructive comments.FundingThe author(s) reported there is no funding associated with the work featured in this article.","PeriodicalId":51280,"journal":{"name":"Statistics in Biopharmaceutical Research","volume":"4 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Biopharmaceutical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19466315.2023.2260776","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
AbstractIn modern statistics, interests shift from pursuing the uniformly minimum variance unbiased estimator to reducing mean squared error (MSE) or residual squared error. Shrinkage-based estimation and regression methods offer better prediction accuracy and improved interpretation. However, the characterization of such optimal statistics in terms of minimizing MSE remains open and challenging in many problems, for example, estimating the treatment effect in adaptive clinical trials with pre-planned modifications to design aspects based on accumulated data. From an alternative perspective, we propose a deep neural network based automatic method to construct an improved estimator from existing ones. Theoretical properties are studied to provide guidance on applicability of our estimator to seek potential improvement. Simulation studies demonstrate that the proposed method has considerable finite-sample efficiency gain compared to several common estimators. In the Adaptive COVID-19 Treatment Trial (ACTT) as a motivating example, our ensemble estimator essentially contributes to a more ethical and efficient adaptive clinical trial with fewer patients enrolled. The proposed framework can be generally applied to various statistical problems, and can serve as a reference measure to guide statistical research.Keywords: Deep learningEfficiencyImproved statisticsDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. Supplemental MaterialsSupplementary Materials including Appendices, Tables and Figures referenced in this article are available online. The R code and a help file to replicate results in the main article are available at https://github.com/tian-yu-zhan/DNN_Point_Estimation.This manuscript was supported by AbbVie Inc. AbbVie participated in the review and approval of the content. Tianyu Zhan is employed by AbbVie Inc., Haoda Fu is employed by Eli Lilly and Company, and Jian Kang is Professor in the Department of Biostatistics at the University of Michigan, Ann Arbor. Kang’s research was partially supported by NIH R01 GM124061 and R01 MH105561. All authors may own AbbVie stock.Conflict of InterestNo potential competing interest was reported by the authors.AcknowledgementsThe authors thank the editorial board and reviewers for their constructive comments.FundingThe author(s) reported there is no funding associated with the work featured in this article.
期刊介绍:
Statistics in Biopharmaceutical Research ( SBR), publishes articles that focus on the needs of researchers and applied statisticians in biopharmaceutical industries; academic biostatisticians from schools of medicine, veterinary medicine, public health, and pharmacy; statisticians and quantitative analysts working in regulatory agencies (e.g., U.S. Food and Drug Administration and its counterpart in other countries); statisticians with an interest in adopting methodology presented in this journal to their own fields; and nonstatisticians with an interest in applying statistical methods to biopharmaceutical problems.
Statistics in Biopharmaceutical Research accepts papers that discuss appropriate statistical methodology and information regarding the use of statistics in all phases of research, development, and practice in the pharmaceutical, biopharmaceutical, device, and diagnostics industries. Articles should focus on the development of novel statistical methods, novel applications of current methods, or the innovative application of statistical principles that can be used by statistical practitioners in these disciplines. Areas of application may include statistical methods for drug discovery, including papers that address issues of multiplicity, sequential trials, adaptive designs, etc.; preclinical and clinical studies; genomics and proteomics; bioassay; biomarkers and surrogate markers; models and analyses of drug history, including pharmacoeconomics, product life cycle, detection of adverse events in clinical studies, and postmarketing risk assessment; regulatory guidelines, including issues of standardization of terminology (e.g., CDISC), tolerance and specification limits related to pharmaceutical practice, and novel methods of drug approval; and detection of adverse events in clinical and toxicological studies. Tutorial articles also are welcome. Articles should include demonstrable evidence of the usefulness of this methodology (presumably by means of an application).
The Editorial Board of SBR intends to ensure that the journal continually provides important, useful, and timely information. To accomplish this, the board strives to attract outstanding articles by seeing that each submission receives a careful, thorough, and prompt review.
Authors can choose to publish gold open access in this journal.