Bone conduction: A linear viscoelastic mixed lumped-continuum model for the human skin in the acoustic frequency range

IF 1.9 4区 工程技术 Q2 ACOUSTICS
Linda Lüchtrath, Eugène Nijman
{"title":"Bone conduction: A linear viscoelastic mixed lumped-continuum model for the human skin in the acoustic frequency range","authors":"Linda Lüchtrath, Eugène Nijman","doi":"10.1115/1.4063936","DOIUrl":null,"url":null,"abstract":"Abstract In conventional and skin-drive bone conduction, the performance of the exciter is strongly influenced by the mechanical impedance of the skin. This impedance is characterized by the resonance of the cutis on the underlying adipose layer. Although the existing Kelvin-Voigt based lumped parameter skin model allows satisfactory approximation of the magnitude of the measured skin impedance, substantial deviations appear in the associated phase. The use of the existing skin model in coupled exciter-skin response calculations may thus lead to prediction errors at resonance peaks. The present work proposes an alternative model which considers the bending wave propagation in the cutis using a continuum model combined with a Zener material model for the underlying adipose tissue. It shows good agreement with the measurement results and leads to insights in the role of the different skin layers in the observed dynamic response.","PeriodicalId":49957,"journal":{"name":"Journal of Vibration and Acoustics-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Acoustics-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063936","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In conventional and skin-drive bone conduction, the performance of the exciter is strongly influenced by the mechanical impedance of the skin. This impedance is characterized by the resonance of the cutis on the underlying adipose layer. Although the existing Kelvin-Voigt based lumped parameter skin model allows satisfactory approximation of the magnitude of the measured skin impedance, substantial deviations appear in the associated phase. The use of the existing skin model in coupled exciter-skin response calculations may thus lead to prediction errors at resonance peaks. The present work proposes an alternative model which considers the bending wave propagation in the cutis using a continuum model combined with a Zener material model for the underlying adipose tissue. It shows good agreement with the measurement results and leads to insights in the role of the different skin layers in the observed dynamic response.
骨传导:声频范围内人体皮肤的线性粘弹性混合集总-连续体模型
摘要在传统骨传导和皮肤驱动骨传导中,皮肤的机械阻抗对激励器的性能有很大影响。这种阻抗的特征是皮下脂肪层上皮肤的共振。尽管现有的基于Kelvin-Voigt的集总参数蒙皮模型可以令人满意地近似测量的蒙皮阻抗的大小,但在相关相位中会出现较大的偏差。因此,在耦合激励器-蒙皮响应计算中使用现有蒙皮模型可能会导致共振峰处的预测误差。目前的工作提出了一种替代模型,该模型考虑了弯曲波在皮肤中的传播,使用连续统模型结合了潜在脂肪组织的齐纳材料模型。它显示了与测量结果的良好一致性,并导致了不同的皮肤层在观察到的动态响应中的作用的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
11.80%
发文量
79
审稿时长
7 months
期刊介绍: The Journal of Vibration and Acoustics is sponsored jointly by the Design Engineering and the Noise Control and Acoustics Divisions of ASME. The Journal is the premier international venue for publication of original research concerning mechanical vibration and sound. Our mission is to serve researchers and practitioners who seek cutting-edge theories and computational and experimental methods that advance these fields. Our published studies reveal how mechanical vibration and sound impact the design and performance of engineered devices and structures and how to control their negative influences. Vibration of continuous and discrete dynamical systems; Linear and nonlinear vibrations; Random vibrations; Wave propagation; Modal analysis; Mechanical signature analysis; Structural dynamics and control; Vibration energy harvesting; Vibration suppression; Vibration isolation; Passive and active damping; Machinery dynamics; Rotor dynamics; Acoustic emission; Noise control; Machinery noise; Structural acoustics; Fluid-structure interaction; Aeroelasticity; Flow-induced vibration and noise.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信