{"title":"On a time-changed variant of the generalized counting process","authors":"M. Khandakar, K. K. Kataria","doi":"10.1017/jpr.2023.70","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we time-change the generalized counting process (GCP) by an independent inverse mixed stable subordinator to obtain a fractional version of the GCP. We call it the mixed fractional counting process (MFCP). The system of fractional differential equations that governs its state probabilities is obtained using the Z transform method. Its one-dimensional distribution, mean, variance, covariance, probability generating function, and factorial moments are obtained. It is shown that the MFCP exhibits the long-range dependence property whereas its increment process has the short-range dependence property. As an application we consider a risk process in which the claims are modelled using the MFCP. For this risk process, we obtain an asymptotic behaviour of its finite-time ruin probability when the claim sizes are subexponentially distributed and the initial capital is arbitrarily large. Later, we discuss some distributional properties of a compound version of the GCP.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jpr.2023.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this paper, we time-change the generalized counting process (GCP) by an independent inverse mixed stable subordinator to obtain a fractional version of the GCP. We call it the mixed fractional counting process (MFCP). The system of fractional differential equations that governs its state probabilities is obtained using the Z transform method. Its one-dimensional distribution, mean, variance, covariance, probability generating function, and factorial moments are obtained. It is shown that the MFCP exhibits the long-range dependence property whereas its increment process has the short-range dependence property. As an application we consider a risk process in which the claims are modelled using the MFCP. For this risk process, we obtain an asymptotic behaviour of its finite-time ruin probability when the claim sizes are subexponentially distributed and the initial capital is arbitrarily large. Later, we discuss some distributional properties of a compound version of the GCP.