Nicolas Fontaine, Marie-Amélie Boucher, François Anctil, Jean Odry, Simon Lachance-Cloutier, Vincent Fortin, Richard Turcotte
{"title":"Combining large-scale and regional hydrological forecasts using simple methods","authors":"Nicolas Fontaine, Marie-Amélie Boucher, François Anctil, Jean Odry, Simon Lachance-Cloutier, Vincent Fortin, Richard Turcotte","doi":"10.1080/07011784.2023.2265893","DOIUrl":null,"url":null,"abstract":"AbstractThe development and expanded application of large-scale hydrological models has produced forecasts that often overlap with more targeted, regional hydrological forecasts. Here the possibility is explored for using simple methods to combine forecasts from a large-scale model, the Great Lakes portion of the National Surface and River Prediction System (NSRPS), and a regional system, the Système de Prévision Hydrologique (SPH) which covers southern Quebec, to improve regional forecasts. Outputs from the two forecasting systems are combined using multiple methods, including the simple mean, a weighted average in which the weights are optimized using the Kling-Gupta Efficiency (KGE), the Reduced Continuous Ranked Probability Score (RCRPS), and Ignorance Score (IGN) as cost functions, and weights calculated from the residual errors of the models. Bayesian Model Averaging (BMA) is also used to combine the probabilistic forecasts from both systems. The results show that it is possible to improve regional hydrological forecasts by using simple weighted combinations with forecasts from the large-scale system, even though the regional system performs clearly better. Performance is assessed via many well-known metrics, such as Nash-Sutcliffe Efficiency (NSE), KGE, RCRPS, and IGN. Results are averaged over 40 gauging stations and analyzed at lead times from 3 to 120 h. Improvements in all criteria for lead times over 60 h are observed, and there is no loss in performance at any lead times. Finally, the methods are used in a leave-one-out setup containing 29 validation basins to simulate performance on ungauged basins. The performance gain for ungauged basins is similar to that of the gauged basins, demonstrating that these simple methods can also improve forecasts in more remote territories where no gauging is available.RésuméLe développement et l’application étendue des modèles hydrologiques large-échelle ont produit des prévisions qui chevauchent régulièrement des prévisions hydrologiques régionales, plus spécifiques à un territoire. Cette étude porte sur l’utilisation de méthodes simples permettant la combinaison des prévisions large-échelle de la partie des Grands Lacs du National Surface and River Prediction System (NSRPS) aux prévisions régionales du Système de Prévision Hydrologique (SPH) qui couvre le sud du Québec, afin d’améliorer ces prévisions régionales. Les sorties de ces deux systèmes sont combinées selon plusieurs méthodes incluant la moyenne simple, des moyennes pondérées qui utilisent comme fonction de coût le Kling-Gupta Efficiency (KGE), le Reduced Continuous Ranked Probability Score (RCRPS) et l’Ignorance Score (IGN), en plus de poids calculés selon les résidus des modèles. Le Bayesian Model Averaging (BMA) est aussi utilisé pour combiner les prévisions des systèmes. Les résultats montrent qu’il est possible d’améliorer les prévisions hydrologiques régionales en utilisant de simples combinaisons pondérées avec les prévisions du système large-échelle, et ce même si le système régional performe mieux que le système large-échelle. La performance est évaluée selon plusieurs métriques bien connues, telles que le Nash-Sutcliffe Efficiency (NSE), KGE, RCRPS et IGN. Les résultats sont moyennés sur 40 stations de jaugeage et analysés pour des horizons de 3 à 120 h. Des améliorations sont observées sur tous les critères pour des horizons de 60 h et plus, et aucune perte de performance n’est observée sur tous les horizons. Finalement, les méthodes de combinaison sont utilisées dans une configuration « leave-one-out » contenant 29 bassins de validation afin de simuler la performance des combinaisons sur les bassins non-jaugés. Le gain en performance pour les bassins non-jaugés est similaire au gain des bassins jaugés, démontrant que ces méthodes simples pourraient aussi améliorer les prévisions des territoires plus éloignés où des stations de jaugeage ne sont pas disponibles.Keywords: Bayesian model averaginghydrologic post-processinghydrological forecastingforecast merging Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe data that support the findings of this study are available from the corresponding author, [MAB], upon reasonable request.Additional informationFundingThe work described in this article has been un- dertaken as part of a research contract funded by the government of Quebec.","PeriodicalId":55278,"journal":{"name":"Canadian Water Resources Journal","volume":"107 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Water Resources Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07011784.2023.2265893","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractThe development and expanded application of large-scale hydrological models has produced forecasts that often overlap with more targeted, regional hydrological forecasts. Here the possibility is explored for using simple methods to combine forecasts from a large-scale model, the Great Lakes portion of the National Surface and River Prediction System (NSRPS), and a regional system, the Système de Prévision Hydrologique (SPH) which covers southern Quebec, to improve regional forecasts. Outputs from the two forecasting systems are combined using multiple methods, including the simple mean, a weighted average in which the weights are optimized using the Kling-Gupta Efficiency (KGE), the Reduced Continuous Ranked Probability Score (RCRPS), and Ignorance Score (IGN) as cost functions, and weights calculated from the residual errors of the models. Bayesian Model Averaging (BMA) is also used to combine the probabilistic forecasts from both systems. The results show that it is possible to improve regional hydrological forecasts by using simple weighted combinations with forecasts from the large-scale system, even though the regional system performs clearly better. Performance is assessed via many well-known metrics, such as Nash-Sutcliffe Efficiency (NSE), KGE, RCRPS, and IGN. Results are averaged over 40 gauging stations and analyzed at lead times from 3 to 120 h. Improvements in all criteria for lead times over 60 h are observed, and there is no loss in performance at any lead times. Finally, the methods are used in a leave-one-out setup containing 29 validation basins to simulate performance on ungauged basins. The performance gain for ungauged basins is similar to that of the gauged basins, demonstrating that these simple methods can also improve forecasts in more remote territories where no gauging is available.RésuméLe développement et l’application étendue des modèles hydrologiques large-échelle ont produit des prévisions qui chevauchent régulièrement des prévisions hydrologiques régionales, plus spécifiques à un territoire. Cette étude porte sur l’utilisation de méthodes simples permettant la combinaison des prévisions large-échelle de la partie des Grands Lacs du National Surface and River Prediction System (NSRPS) aux prévisions régionales du Système de Prévision Hydrologique (SPH) qui couvre le sud du Québec, afin d’améliorer ces prévisions régionales. Les sorties de ces deux systèmes sont combinées selon plusieurs méthodes incluant la moyenne simple, des moyennes pondérées qui utilisent comme fonction de coût le Kling-Gupta Efficiency (KGE), le Reduced Continuous Ranked Probability Score (RCRPS) et l’Ignorance Score (IGN), en plus de poids calculés selon les résidus des modèles. Le Bayesian Model Averaging (BMA) est aussi utilisé pour combiner les prévisions des systèmes. Les résultats montrent qu’il est possible d’améliorer les prévisions hydrologiques régionales en utilisant de simples combinaisons pondérées avec les prévisions du système large-échelle, et ce même si le système régional performe mieux que le système large-échelle. La performance est évaluée selon plusieurs métriques bien connues, telles que le Nash-Sutcliffe Efficiency (NSE), KGE, RCRPS et IGN. Les résultats sont moyennés sur 40 stations de jaugeage et analysés pour des horizons de 3 à 120 h. Des améliorations sont observées sur tous les critères pour des horizons de 60 h et plus, et aucune perte de performance n’est observée sur tous les horizons. Finalement, les méthodes de combinaison sont utilisées dans une configuration « leave-one-out » contenant 29 bassins de validation afin de simuler la performance des combinaisons sur les bassins non-jaugés. Le gain en performance pour les bassins non-jaugés est similaire au gain des bassins jaugés, démontrant que ces méthodes simples pourraient aussi améliorer les prévisions des territoires plus éloignés où des stations de jaugeage ne sont pas disponibles.Keywords: Bayesian model averaginghydrologic post-processinghydrological forecastingforecast merging Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe data that support the findings of this study are available from the corresponding author, [MAB], upon reasonable request.Additional informationFundingThe work described in this article has been un- dertaken as part of a research contract funded by the government of Quebec.
期刊介绍:
The Canadian Water Resources Journal accepts manuscripts in English or French and publishes abstracts in both official languages. Preference is given to manuscripts focusing on science and policy aspects of Canadian water management. Specifically, manuscripts should stimulate public awareness and understanding of Canada''s water resources, encourage recognition of the high priority of water as a resource, and provide new or increased knowledge on some aspect of Canada''s water.
The Canadian Water Resources Journal was first published in the fall of 1976 and it has grown in stature to be recognized as a quality and important publication in the water resources field.