Multiscale spatially varying coefficient modelling using a Geographical Gaussian Process GAM

IF 4.3 1区 地球科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Alexis Comber, Paul Harris, Chris Brunsdon
{"title":"Multiscale spatially varying coefficient modelling using a Geographical Gaussian Process GAM","authors":"Alexis Comber, Paul Harris, Chris Brunsdon","doi":"10.1080/13658816.2023.2270285","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel spatially varying coefficient (SVC) regression through a Geographical Gaussian Process GAM (GGP-GAM): a Generalized Additive Model (GAM) with Gaussian Process (GP) splines parameterised at observation locations. A GGP-GAM was applied to multiple simulated coefficient datasets exhibiting varying degrees of spatial heterogeneity and out-performed the SVC brand-leader, Multiscale Geographically Weighted Regression (MGWR), under a range of fit metrics. Both were then applied to a Brexit case study and compared, with MGWR marginally out-performing GGP-GAM. The theoretical frameworks and implementation of both approaches are discussed: GWR models calibrate multiple models whereas GAMs provide a full single model; GAMs can automatically penalise local collinearity; GWR-based approaches are computationally more demanding; MGWR is still only for Gaussian responses; MGWR bandwidths are intuitive indicators of spatial heterogeneity. GGP-GAM calibration and tuning are also discussed and areas of future work are identified, including the creation of a user-friendly package to support model creation and coefficient mapping, and to facilitate ease of comparison with alternate SVC models. A final observation that GGP-GAMs have the potential to overcome some of the long-standing reservations about GWR-based regression methods and to elevate the perception of SVCs amongst the broader community.","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"156 3","pages":"0"},"PeriodicalIF":4.3000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geographical Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13658816.2023.2270285","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a novel spatially varying coefficient (SVC) regression through a Geographical Gaussian Process GAM (GGP-GAM): a Generalized Additive Model (GAM) with Gaussian Process (GP) splines parameterised at observation locations. A GGP-GAM was applied to multiple simulated coefficient datasets exhibiting varying degrees of spatial heterogeneity and out-performed the SVC brand-leader, Multiscale Geographically Weighted Regression (MGWR), under a range of fit metrics. Both were then applied to a Brexit case study and compared, with MGWR marginally out-performing GGP-GAM. The theoretical frameworks and implementation of both approaches are discussed: GWR models calibrate multiple models whereas GAMs provide a full single model; GAMs can automatically penalise local collinearity; GWR-based approaches are computationally more demanding; MGWR is still only for Gaussian responses; MGWR bandwidths are intuitive indicators of spatial heterogeneity. GGP-GAM calibration and tuning are also discussed and areas of future work are identified, including the creation of a user-friendly package to support model creation and coefficient mapping, and to facilitate ease of comparison with alternate SVC models. A final observation that GGP-GAMs have the potential to overcome some of the long-standing reservations about GWR-based regression methods and to elevate the perception of SVCs amongst the broader community.
基于地理高斯过程的多尺度空间变系数建模
本文通过地理高斯过程GAM (GGP-GAM)提出了一种新的空间变系数(SVC)回归方法:高斯过程(GP)样条在观测位置参数化的广义加性模型(GAM)。将GGP-GAM应用于具有不同程度空间异质性的多个模拟系数数据集,并在一系列拟合指标下优于SVC品牌领导者多尺度地理加权回归(MGWR)。然后将两者应用于英国脱欧案例研究并进行比较,MGWR略优于GGP-GAM。讨论了两种方法的理论框架和实现:GWR模型校准多个模型,而GAMs提供完整的单一模型;GAMs可以自动惩罚局部共线性;基于gwr的方法在计算上要求更高;MGWR仍然只适用于高斯响应;MGWR带宽是空间异质性的直观指标。还讨论了GGP-GAM的校准和调整,并确定了未来工作的领域,包括创建一个用户友好的软件包来支持模型创建和系数映射,并促进与备选SVC模型的比较。最后观察到GGP-GAMs有潜力克服一些长期以来对基于gwr的回归方法的保留意见,并在更广泛的社区中提高对SVCs的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.00
自引率
7.00%
发文量
81
审稿时长
9 months
期刊介绍: International Journal of Geographical Information Science provides a forum for the exchange of original ideas, approaches, methods and experiences in the rapidly growing field of geographical information science (GIScience). It is intended to interest those who research fundamental and computational issues of geographic information, as well as issues related to the design, implementation and use of geographical information for monitoring, prediction and decision making. Published research covers innovations in GIScience and novel applications of GIScience in natural resources, social systems and the built environment, as well as relevant developments in computer science, cartography, surveying, geography and engineering in both developed and developing countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信