A Bayesian Semi-parametric Modelling Approach for Area Level Small Area Studies

Marten Thompson, Snigdhansu Chatterjee
{"title":"A Bayesian Semi-parametric Modelling Approach for Area Level Small Area Studies","authors":"Marten Thompson, Snigdhansu Chatterjee","doi":"10.1177/00080683231198606","DOIUrl":null,"url":null,"abstract":"We present a new semiparametric extension of the Fay-Herriot model, termed the agnostic Fay-Herriot model (AGFH), in which the sampling-level model is expressed in terms of an unknown general function [Formula: see text]. Thus, the AGFH model can express any distribution in the sampling model since the choice of [Formula: see text] is extremely broad. We propose a Bayesian modelling scheme for AGFH where the unknown function [Formula: see text] is assigned a Gaussian Process prior. Using a Metropolis within Gibbs sampling Markov Chain Monte Carlo scheme, we study the performance of the AGFH model, along with that of a hierarchical Bayesian extension of the Fay-Herriot model. Our analysis shows that the AGFH is an excellent modelling alternative when the sampling distribution is non-Normal, especially in the case where the sampling distribution is bounded. It is also the best choice when the sampling variance is high. However, the hierarchical Bayesian framework and the traditional empirical Bayesian framework can be good modelling alternatives when the signal-to-noise ratio is high, and there are computational constraints. AMS subject classification: 62D05; 62F15","PeriodicalId":487287,"journal":{"name":"Calcutta Statistical Association Bulletin","volume":"15 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calcutta Statistical Association Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00080683231198606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a new semiparametric extension of the Fay-Herriot model, termed the agnostic Fay-Herriot model (AGFH), in which the sampling-level model is expressed in terms of an unknown general function [Formula: see text]. Thus, the AGFH model can express any distribution in the sampling model since the choice of [Formula: see text] is extremely broad. We propose a Bayesian modelling scheme for AGFH where the unknown function [Formula: see text] is assigned a Gaussian Process prior. Using a Metropolis within Gibbs sampling Markov Chain Monte Carlo scheme, we study the performance of the AGFH model, along with that of a hierarchical Bayesian extension of the Fay-Herriot model. Our analysis shows that the AGFH is an excellent modelling alternative when the sampling distribution is non-Normal, especially in the case where the sampling distribution is bounded. It is also the best choice when the sampling variance is high. However, the hierarchical Bayesian framework and the traditional empirical Bayesian framework can be good modelling alternatives when the signal-to-noise ratio is high, and there are computational constraints. AMS subject classification: 62D05; 62F15
区域级小区域研究的贝叶斯半参数建模方法
我们提出了Fay-Herriot模型的一种新的半参数扩展,称为不可知论的Fay-Herriot模型(AGFH),其中采样水平模型用未知的一般函数表示[公式:见文本]。因此,由于[公式:见文]的选择非常广泛,AGFH模型可以表示采样模型中的任何分布。我们提出了一种AGFH的贝叶斯建模方案,其中未知函数[公式:见文本]被赋予高斯过程先验。利用Gibbs抽样Markov链蒙特卡罗方案中的Metropolis,我们研究了AGFH模型的性能,以及Fay-Herriot模型的层次贝叶斯扩展的性能。我们的分析表明,当抽样分布是非正态分布时,特别是在抽样分布有界的情况下,AGFH是一个很好的建模选择。当抽样方差较大时,它也是最佳选择。然而,当信噪比较高且存在计算约束时,分层贝叶斯框架和传统经验贝叶斯框架可以作为很好的建模选择。AMS学科分类:62D05;62年f15
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信