Interplay of heparan sulfate chains with the core proteins of syndecans 2 and 4

Martyna Maszota‐Zieleniak, Adam Liwo, Sylvie Ricard‐Blum, Sergey A. Samsonov
{"title":"Interplay of heparan sulfate chains with the core proteins of syndecans 2 and 4","authors":"Martyna Maszota‐Zieleniak, Adam Liwo, Sylvie Ricard‐Blum, Sergey A. Samsonov","doi":"10.1002/pgr2.10","DOIUrl":null,"url":null,"abstract":"Abstract We have previously shown that the extracellular domains of the four syndecans are intrinsically disordered, and adopt a wide range of conformations. We report here the building of coarse‐grained models of the extracellular domains of human syndecans 2 and 4 using small‐angle X‐ray scattering restraints. One, two or three heparan sulfate (HS) hexadecasaccharides, (IdoA[2S]GlcNS[6S]) 8 , were attached to three serine residues of the core proteins, resulting in eight variants for each syndecan that were used for all‐atom molecular dynamics (MD) simulations (0.5–1 µs). Syndecan‐4 had a larger conformational diversity than syndecan‐2, and remained extended during MD simulations in absence of HS whereas syndecan‐2 adopted more compact conformations. Their core proteins thus appeared to be structurally distinct. The HS chains also behave differently, the middle chain being more flexible in syndecan‐4, and the third chain being able to interact with the core protein regions mediating cell adhesion. The cell adhesion sites on both core proteins were flexible, with or without HS chains, the NXIP motif of syndecan‐2 being located in a particularly flexible region. In conclusion, the HS chains induce moderate changes in the conformational dynamics of both syndecans, depending on the number of HS chains and their location on the core protein, and on the core protein itself.","PeriodicalId":74585,"journal":{"name":"Proteoglycan research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteoglycan research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pgr2.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract We have previously shown that the extracellular domains of the four syndecans are intrinsically disordered, and adopt a wide range of conformations. We report here the building of coarse‐grained models of the extracellular domains of human syndecans 2 and 4 using small‐angle X‐ray scattering restraints. One, two or three heparan sulfate (HS) hexadecasaccharides, (IdoA[2S]GlcNS[6S]) 8 , were attached to three serine residues of the core proteins, resulting in eight variants for each syndecan that were used for all‐atom molecular dynamics (MD) simulations (0.5–1 µs). Syndecan‐4 had a larger conformational diversity than syndecan‐2, and remained extended during MD simulations in absence of HS whereas syndecan‐2 adopted more compact conformations. Their core proteins thus appeared to be structurally distinct. The HS chains also behave differently, the middle chain being more flexible in syndecan‐4, and the third chain being able to interact with the core protein regions mediating cell adhesion. The cell adhesion sites on both core proteins were flexible, with or without HS chains, the NXIP motif of syndecan‐2 being located in a particularly flexible region. In conclusion, the HS chains induce moderate changes in the conformational dynamics of both syndecans, depending on the number of HS chains and their location on the core protein, and on the core protein itself.
硫酸乙酰肝素链与syndecans 2和4核心蛋白的相互作用
我们之前已经表明,四种syndecans的细胞外结构域本质上是无序的,并采用广泛的构象。我们在此报告了利用小角度X射线散射约束建立人类syndecans 2和4细胞外结构域的粗粒度模型。将一个、两个或三个硫酸肝素(HS)十六进糖(IdoA[2S]GlcNS[6S]) 8与核心蛋白的三个丝氨酸残基结合,得到每个syndecan的8个变体,用于全原子分子动力学(0.5-1µs)模拟。Syndecan‐4具有比Syndecan‐2更大的构象多样性,并且在没有HS的MD模拟中保持扩展,而Syndecan‐2采用更紧凑的构象。因此,它们的核心蛋白在结构上似乎是不同的。HS链的行为也有所不同,中间链在syndecan‐4中更灵活,第三条链能够与核心蛋白区域相互作用,介导细胞粘附。无论是否有HS链,两个核心蛋白上的细胞粘附位点都是灵活的,syndecan‐2的NXIP基序位于一个特别灵活的区域。综上所述,HS链诱导两种syndecans的构象动力学发生适度变化,这取决于HS链的数量及其在核心蛋白上的位置,以及核心蛋白本身。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信