Anisotropic singular Trudinger-Moser inequalities on the whole Euclidean space

IF 1.1 3区 数学 Q1 MATHEMATICS
Xiaomeng Li
{"title":"Anisotropic singular Trudinger-Moser inequalities on the whole Euclidean space","authors":"Xiaomeng Li","doi":"10.3934/dcds.2023111","DOIUrl":null,"url":null,"abstract":"Let $ F: \\mathbb{R}^n\\rightarrow [0, \\, \\infty) $ be a convex function of class $ C^2(\\mathbb{R}^n\\backslash\\{0\\}) $, which is even and positively homogeneous of degree $ 1 $. In this paper, we prove that$ \\sup\\limits_{u\\in W^{1, n}(\\mathbb{R}^n), \\, \\displaystyle{\\int}_{\\mathbb{R}^n}(F^n(\\nabla u)+|u|^n)dx\\leq1}\\displaystyle{\\int}_{\\mathbb{R}^n}\\frac{\\Phi(\\lambda_{n}(1-\\frac{\\beta}{n})(1+\\alpha\\|u\\|^{n}_n)^{\\frac{1}{n-1}}|u|^{\\frac{n}{n-1}})}{F^o(x)^\\beta}dx $is finite for $ 0\\leq\\alpha<1 $, and the supremum is infinity for $ \\alpha\\geq1 $, where $ F^o(x) $ is the polar function of $ F $, $ \\Phi(t) = e^t-\\sum_{j = 0}^{n-2}\\frac{t^j}{j!} $, $ \\beta\\in[0, n) $, $ \\lambda_n = n^{\\frac{n}{n-1}}\\kappa_n^{\\frac{1}{n-1}} $ and $ \\kappa_n $ is the volume of the unit Wulff ball. Moreover, by using the method of blow-up analysis, we also obtain the existence of extremal functions for the supremum when $ 0\\leq\\alpha<1 $.","PeriodicalId":51007,"journal":{"name":"Discrete and Continuous Dynamical Systems","volume":"2011 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2023111","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $ F: \mathbb{R}^n\rightarrow [0, \, \infty) $ be a convex function of class $ C^2(\mathbb{R}^n\backslash\{0\}) $, which is even and positively homogeneous of degree $ 1 $. In this paper, we prove that$ \sup\limits_{u\in W^{1, n}(\mathbb{R}^n), \, \displaystyle{\int}_{\mathbb{R}^n}(F^n(\nabla u)+|u|^n)dx\leq1}\displaystyle{\int}_{\mathbb{R}^n}\frac{\Phi(\lambda_{n}(1-\frac{\beta}{n})(1+\alpha\|u\|^{n}_n)^{\frac{1}{n-1}}|u|^{\frac{n}{n-1}})}{F^o(x)^\beta}dx $is finite for $ 0\leq\alpha<1 $, and the supremum is infinity for $ \alpha\geq1 $, where $ F^o(x) $ is the polar function of $ F $, $ \Phi(t) = e^t-\sum_{j = 0}^{n-2}\frac{t^j}{j!} $, $ \beta\in[0, n) $, $ \lambda_n = n^{\frac{n}{n-1}}\kappa_n^{\frac{1}{n-1}} $ and $ \kappa_n $ is the volume of the unit Wulff ball. Moreover, by using the method of blow-up analysis, we also obtain the existence of extremal functions for the supremum when $ 0\leq\alpha<1 $.
整个欧几里德空间上的各向异性奇异Trudinger-Moser不等式
设$ F: \mathbb{R}^n\rightarrow [0, \, \infty) $为$ C^2(\mathbb{R}^n\backslash\{0\}) $类的凸函数,它是次为$ 1 $的偶数正齐次函数。本文证明了$ \sup\limits_{u\in W^{1, n}(\mathbb{R}^n), \, \displaystyle{\int}_{\mathbb{R}^n}(F^n(\nabla u)+|u|^n)dx\leq1}\displaystyle{\int}_{\mathbb{R}^n}\frac{\Phi(\lambda_{n}(1-\frac{\beta}{n})(1+\alpha\|u\|^{n}_n)^{\frac{1}{n-1}}|u|^{\frac{n}{n-1}})}{F^o(x)^\beta}dx $对于$ 0\leq\alpha<1 $是有限的,对于$ \alpha\geq1 $是上无穷大的,其中$ F^o(x) $是$ F $、$ \Phi(t) = e^t-\sum_{j = 0}^{n-2}\frac{t^j}{j!} $、$ \beta\in[0, n) $、$ \lambda_n = n^{\frac{n}{n-1}}\kappa_n^{\frac{1}{n-1}} $和$ \kappa_n $是单位伍尔夫球的体积。此外,利用爆破分析的方法,我们还得到了$ 0\leq\alpha<1 $时的极值函数的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
175
审稿时长
6 months
期刊介绍: DCDS, series A includes peer-reviewed original papers and invited expository papers on the theory and methods of analysis, differential equations and dynamical systems. This journal is committed to recording important new results in its field and maintains the highest standards of innovation and quality. To be published in this journal, an original paper must be correct, new, nontrivial and of interest to a substantial number of readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信