{"title":"Linearization of a nonautonomous unbounded system with hyperbolic linear part: A spectral approach","authors":"Mengda Wu, Yonghui Xia","doi":"10.3934/dcds.2023112","DOIUrl":null,"url":null,"abstract":"Palmer's linearization theorem states that a hyperbolic linear system is topologically conjugated to its bounded perturbation. Recently, Huerta (DCDS 2020 [8]), Castañeda and Robledo (DCDS 2018 [3]) and Lin (NA 2007 [13]) generalized Palmer's theorem to the linearization with unbounded perturbation (continuous or discrete) by assuming that the linear part of the system is contractive or nonuniformly contractive. However, these previous works sacrifice the hyperbolicity of the linear part. Is it possible to study the linearization with unbounded perturbations in the hyperbolic case? In this paper, we improve the previous works [3,8,13] to the hyperbolic unbounded systems. For the contraction, each trajectory crosses its respective unit sphere exactly once. However, for the hyperbolic system, either the trajectory does not cross the unit sphere, or the trajectory cross it twice. Thus, the standard method used in the previous works for the contractive case is not valid for the hyperbolic case yet. We develop a method to overcome the difficulty based on two 'cylinders'. Furthermore, quantitative results for the parameters are provided.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2023112","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Palmer's linearization theorem states that a hyperbolic linear system is topologically conjugated to its bounded perturbation. Recently, Huerta (DCDS 2020 [8]), Castañeda and Robledo (DCDS 2018 [3]) and Lin (NA 2007 [13]) generalized Palmer's theorem to the linearization with unbounded perturbation (continuous or discrete) by assuming that the linear part of the system is contractive or nonuniformly contractive. However, these previous works sacrifice the hyperbolicity of the linear part. Is it possible to study the linearization with unbounded perturbations in the hyperbolic case? In this paper, we improve the previous works [3,8,13] to the hyperbolic unbounded systems. For the contraction, each trajectory crosses its respective unit sphere exactly once. However, for the hyperbolic system, either the trajectory does not cross the unit sphere, or the trajectory cross it twice. Thus, the standard method used in the previous works for the contractive case is not valid for the hyperbolic case yet. We develop a method to overcome the difficulty based on two 'cylinders'. Furthermore, quantitative results for the parameters are provided.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.