Quasianalytic Functionals and Ultradistributions as Boundary Values of Harmonic Functions

IF 1.1 2区 数学 Q1 MATHEMATICS
Andreas Debrouwere, Jasson Vindas
{"title":"Quasianalytic Functionals and Ultradistributions as Boundary Values of Harmonic Functions","authors":"Andreas Debrouwere, Jasson Vindas","doi":"10.4171/prims/59-3-8","DOIUrl":null,"url":null,"abstract":"We study boundary values of harmonic functions in spaces of quasianalytic functionals and spaces of ultradistributions of non-quasianalytic type. As an application, we provide a new approach to Hörmander’s support theorem for quasianalytic functionals. Our main technical tool is a description of ultradifferentiable functions by almost harmonic functions, a concept that we introduce in this article. We work in the setting of ultradifferentiable classes defined via weight matrices. In particular, our results simultaneously apply to the two standard classes defined via weight sequences and via weight functions.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":"57 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Research Institute for Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/prims/59-3-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

We study boundary values of harmonic functions in spaces of quasianalytic functionals and spaces of ultradistributions of non-quasianalytic type. As an application, we provide a new approach to Hörmander’s support theorem for quasianalytic functionals. Our main technical tool is a description of ultradifferentiable functions by almost harmonic functions, a concept that we introduce in this article. We work in the setting of ultradifferentiable classes defined via weight matrices. In particular, our results simultaneously apply to the two standard classes defined via weight sequences and via weight functions.
拟解析泛函和作为调和函数边值的超分布
研究了拟解析泛函空间和非拟解析型超分布空间中调和函数的边值。作为一个应用,我们提供了一种新的方法来研究Hörmander的准解析泛函的支持定理。我们的主要技术工具是用几乎调和函数来描述超可微函数,这是我们在本文中引入的一个概念。我们在由权矩阵定义的超可微类的集合中工作。特别是,我们的结果同时适用于通过权重序列和权重函数定义的两个标准类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: The aim of the Publications of the Research Institute for Mathematical Sciences (PRIMS) is to publish original research papers in the mathematical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信