Jinji Li, Scott D. Keating, Kristopher A. Innanen, Roman Shor, Nasser Kazemi
{"title":"Simultaneous waveform inversion of seismic-while-drilling data for P-wave velocity, density, and source parameters","authors":"Jinji Li, Scott D. Keating, Kristopher A. Innanen, Roman Shor, Nasser Kazemi","doi":"10.1190/geo2023-0101.1","DOIUrl":null,"url":null,"abstract":"Full-waveform inversion (FWI), as an optimization-based approach to estimating subsurface models, is limited by incomplete acquisition and illumination of the subsurface. The incorporation of additional data from new and independent raypaths should be expected to result in significant increase in the accuracy of FWI models. In principle, seismic-while-drilling (SWD) technology can supply these additional raypaths; however, it introduces a new suite of unknowns, namely precise source locations (i.e., drilling path), source signature, and radiation characteristics. A new FWI algorithm is formulated in which the source radiation patterns and positions join the velocity and density values of the grid cells as unknowns to be determined. Several numerical inversion experiments are then conducted with different source settings using a synthetic model. The SWD sources are supplemented by explosive sources and multicomponent receivers at the surface, simulating a conventional surface acquisition geometry. The subsurface model and SWD source properties are recovered and analyzed. The analysis is suggestive that SWD involvement can enhance the accuracy of FWI models, with varying degrees of enhancement depending on factors such as trajectory inclination, source density, and drill path extension. The impact of SWD-FWI over standard FWI is reduced when low-frequency data are missing, but improvements over the models constructed with no subsurface sources remain. This formulation permits general source information, such as position and moment tensor components, to be independently obtained. This inversion scheme may lead to a range of potential applications for which medium properties and source information are required.","PeriodicalId":55102,"journal":{"name":"Geophysics","volume":"42 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/geo2023-0101.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Full-waveform inversion (FWI), as an optimization-based approach to estimating subsurface models, is limited by incomplete acquisition and illumination of the subsurface. The incorporation of additional data from new and independent raypaths should be expected to result in significant increase in the accuracy of FWI models. In principle, seismic-while-drilling (SWD) technology can supply these additional raypaths; however, it introduces a new suite of unknowns, namely precise source locations (i.e., drilling path), source signature, and radiation characteristics. A new FWI algorithm is formulated in which the source radiation patterns and positions join the velocity and density values of the grid cells as unknowns to be determined. Several numerical inversion experiments are then conducted with different source settings using a synthetic model. The SWD sources are supplemented by explosive sources and multicomponent receivers at the surface, simulating a conventional surface acquisition geometry. The subsurface model and SWD source properties are recovered and analyzed. The analysis is suggestive that SWD involvement can enhance the accuracy of FWI models, with varying degrees of enhancement depending on factors such as trajectory inclination, source density, and drill path extension. The impact of SWD-FWI over standard FWI is reduced when low-frequency data are missing, but improvements over the models constructed with no subsurface sources remain. This formulation permits general source information, such as position and moment tensor components, to be independently obtained. This inversion scheme may lead to a range of potential applications for which medium properties and source information are required.
期刊介绍:
Geophysics, published by the Society of Exploration Geophysicists since 1936, is an archival journal encompassing all aspects of research, exploration, and education in applied geophysics.
Geophysics articles, generally more than 275 per year in six issues, cover the entire spectrum of geophysical methods, including seismology, potential fields, electromagnetics, and borehole measurements. Geophysics, a bimonthly, provides theoretical and mathematical tools needed to reproduce depicted work, encouraging further development and research.
Geophysics papers, drawn from industry and academia, undergo a rigorous peer-review process to validate the described methods and conclusions and ensure the highest editorial and production quality. Geophysics editors strongly encourage the use of real data, including actual case histories, to highlight current technology and tutorials to stimulate ideas. Some issues feature a section of solicited papers on a particular subject of current interest. Recent special sections focused on seismic anisotropy, subsalt exploration and development, and microseismic monitoring.
The PDF format of each Geophysics paper is the official version of record.