Rational points on symmetric squares of constant algebraic curves over function fields

Pub Date : 2023-10-10 DOI:10.5802/jtnb.1252
Jennifer Berg, José Felipe Voloch
{"title":"Rational points on symmetric squares of constant algebraic curves over function fields","authors":"Jennifer Berg, José Felipe Voloch","doi":"10.5802/jtnb.1252","DOIUrl":null,"url":null,"abstract":"We consider smooth projective curves C/𝔽 over a finite field and their symmetric squares C (2) . For a global function field K/𝔽, we study the K-rational points of C (2) . We describe the adelic points of C (2) surviving Frobenius descent and how the K-rational points fit there. Our methods also lead to an explicit bound on the number of K-rational points of C (2) satisfying an additional condition. Some of our results apply to arbitrary constant subvarieties of abelian varieties, however we produce examples which show that not all of our stronger conclusions extend.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jtnb.1252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider smooth projective curves C/𝔽 over a finite field and their symmetric squares C (2) . For a global function field K/𝔽, we study the K-rational points of C (2) . We describe the adelic points of C (2) surviving Frobenius descent and how the K-rational points fit there. Our methods also lead to an explicit bound on the number of K-rational points of C (2) satisfying an additional condition. Some of our results apply to arbitrary constant subvarieties of abelian varieties, however we produce examples which show that not all of our stronger conclusions extend.
分享
查看原文
函数场上常代数曲线对称平方上的有理点
考虑有限域上的光滑射影曲线C/形及其对称平方C(2)。对于一个全局函数域K/∈,我们研究了C(2)的K个有理点。我们描述了C(2)在Frobenius下降中幸存下来的阿德利克点以及k -有理点如何在那里拟合。我们的方法还得出了C(2)的k -有理点个数满足附加条件的显式界。我们的一些结果适用于任意常数阿贝尔变体的子变体,然而,我们给出的例子表明,并不是我们所有更强的结论都可以推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信