On Characteristic Polynomials of Automorphisms of Enriques Surfaces

IF 1.1 2区 数学 Q1 MATHEMATICS
Simon Brandhorst, Sławomir Rams, Ichiro Shimada
{"title":"On Characteristic Polynomials of Automorphisms of Enriques Surfaces","authors":"Simon Brandhorst, Sławomir Rams, Ichiro Shimada","doi":"10.4171/prims/59-3-7","DOIUrl":null,"url":null,"abstract":"Let $f$ be an automorphism of a complex Enriques surface $Y$ and let $p\\_f$ denote the characteristic polynomial of the isometry $f^\\*$ of the numerical Néron–Severi lattice of $Y$ induced by $f$. We combine a modification of McMullen’s method with Borcherds’ method to prove that the modulo-$2$ reduction $(p\\_f(x) \\bmod 2)$ is a product of modulo-$2$ reductions of (some of) the five cyclotomic polynomials $\\Phi\\_m$, where $m \\leq 9$ and $m$ is odd. We study Enriques surfaces that realizevmodulo-$2$ reductions of $\\Phi\\_7$, $\\Phi\\_9$ and show that each of the five polynomials $(\\Phi\\_m(x) \\bmod 2)$ is a factor of the modulo-$2$ reduction $(p\\_f(x) \\bmod 2)$ for a complex Enriques surface.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":"225 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Research Institute for Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/prims/59-3-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Let $f$ be an automorphism of a complex Enriques surface $Y$ and let $p\_f$ denote the characteristic polynomial of the isometry $f^\*$ of the numerical Néron–Severi lattice of $Y$ induced by $f$. We combine a modification of McMullen’s method with Borcherds’ method to prove that the modulo-$2$ reduction $(p\_f(x) \bmod 2)$ is a product of modulo-$2$ reductions of (some of) the five cyclotomic polynomials $\Phi\_m$, where $m \leq 9$ and $m$ is odd. We study Enriques surfaces that realizevmodulo-$2$ reductions of $\Phi\_7$, $\Phi\_9$ and show that each of the five polynomials $(\Phi\_m(x) \bmod 2)$ is a factor of the modulo-$2$ reduction $(p\_f(x) \bmod 2)$ for a complex Enriques surface.
关于Enriques曲面自同构的特征多项式
设$f$为复Enriques曲面$Y$的自同构,设$p\_f$为$f$诱导的$Y$的数值nsamron - severi格的等长$f^\*$的特征多项式。我们将McMullen方法的修正与Borcherds方法结合起来,证明了模$2$约简$(p\_f(x) \bmod 2)$是五个分环多项式$\Phi\_m$的(某些)模$2$约简的乘积,其中$m \leq 9$和$m$是奇数。我们研究了实现$\Phi\_7$, $\Phi\_9$的模- $2$约简的Enriques曲面,并表明对于复杂的Enriques曲面,五个多项式$(\Phi\_m(x) \bmod 2)$中的每一个都是模- $2$约简$(p\_f(x) \bmod 2)$的一个因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: The aim of the Publications of the Research Institute for Mathematical Sciences (PRIMS) is to publish original research papers in the mathematical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信