{"title":"Centro-affine differential geometry and the log-Minkowski problem","authors":"Emanuel Milman","doi":"10.4171/jems/1386","DOIUrl":null,"url":null,"abstract":"We interpret the log-Brunn–Minkowski conjecture of Böröczky–Lutwak–Yang–Zhang as a spectral problem in centro-affine differential geometry. In particular, we show that the Hilbert--Brunn--Minkowski operator coincides with the centro-affine Laplacian, thus obtaining a new avenue for tackling the conjecture using insights from affine differential geometry. As every strongly convex hypersurface in $\\mathbb{R}^n$ is a centro-affine unit sphere, it has constant centro-affine Ricci curvature equal to $n-2$, in stark contrast to the standard weighted Ricci curvature of the associated metric-measure space, which will in general be negative. In particular, we may use the classical argument of Lichnerowicz and a centro-affine Bochner formula to give a new proof of the Brunn–Minkowski inequality. For origin-symmetric convex bodies enjoying fairly generous curvature pinching bounds (improving with dimension), we are able to show global uniqueness in the $L^p$- and log-Minkowski problems, as well as the corresponding global $L^p$- and log-Minkowski conjectured inequalities. As a consequence, we resolve the isomorphic version of the log-Minkowski problem: for any origin-symmetric convex body $\\bar K$ in $\\mathbb{R}^n$, there exists an origin-symmetric convex body $K$ with $\\bar K \\subset K \\subset 8 \\bar K$ such that $K$ satisfies the log-Minkowski conjectured inequality, and such that $K$ is uniquely determined by its cone-volume measure $V\\_K$. If $\\bar K$ is not extremely far from a Euclidean ball to begin with, an analogous isometric result, where $8$ is replaced by $1+\\varepsilon$, is obtained as well.","PeriodicalId":50003,"journal":{"name":"Journal of the European Mathematical Society","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/jems/1386","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 17
Abstract
We interpret the log-Brunn–Minkowski conjecture of Böröczky–Lutwak–Yang–Zhang as a spectral problem in centro-affine differential geometry. In particular, we show that the Hilbert--Brunn--Minkowski operator coincides with the centro-affine Laplacian, thus obtaining a new avenue for tackling the conjecture using insights from affine differential geometry. As every strongly convex hypersurface in $\mathbb{R}^n$ is a centro-affine unit sphere, it has constant centro-affine Ricci curvature equal to $n-2$, in stark contrast to the standard weighted Ricci curvature of the associated metric-measure space, which will in general be negative. In particular, we may use the classical argument of Lichnerowicz and a centro-affine Bochner formula to give a new proof of the Brunn–Minkowski inequality. For origin-symmetric convex bodies enjoying fairly generous curvature pinching bounds (improving with dimension), we are able to show global uniqueness in the $L^p$- and log-Minkowski problems, as well as the corresponding global $L^p$- and log-Minkowski conjectured inequalities. As a consequence, we resolve the isomorphic version of the log-Minkowski problem: for any origin-symmetric convex body $\bar K$ in $\mathbb{R}^n$, there exists an origin-symmetric convex body $K$ with $\bar K \subset K \subset 8 \bar K$ such that $K$ satisfies the log-Minkowski conjectured inequality, and such that $K$ is uniquely determined by its cone-volume measure $V\_K$. If $\bar K$ is not extremely far from a Euclidean ball to begin with, an analogous isometric result, where $8$ is replaced by $1+\varepsilon$, is obtained as well.
期刊介绍:
The Journal of the European Mathematical Society (JEMS) is the official journal of the EMS.
The Society, founded in 1990, works at promoting joint scientific efforts between the many different structures that characterize European mathematics. JEMS will publish research articles in all active areas of pure and applied mathematics. These will be selected by a distinguished, international board of editors for their outstanding quality and interest, according to the highest international standards.
Occasionally, substantial survey papers on topics of exceptional interest will also be published. Starting in 1999, the Journal was published by Springer-Verlag until the end of 2003. Since 2004 it is published by the EMS Publishing House. The first Editor-in-Chief of the Journal was J. Jost, succeeded by H. Brezis in 2004.
The Journal of the European Mathematical Society is covered in:
Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.