Two-well linearization for solid-solid phase transitions

IF 2.5 1区 数学 Q1 MATHEMATICS
Elisa Davoli, Manuel Friedrich
{"title":"Two-well linearization for solid-solid phase transitions","authors":"Elisa Davoli, Manuel Friedrich","doi":"10.4171/jems/1385","DOIUrl":null,"url":null,"abstract":"In this paper we consider nonlinearly elastic, frame-indifferent, and singularly perturbed two-well models for materials undergoing solid-solid phase transitions in any space dimensions, and we perform a simultaneous passage to sharp-interface and small-strain limits. Sequences of deformations with equibounded energies are decomposed via suitable Caccioppoli partitions into the sum of piecewise constant rigid movements and suitably rescaled displacements. These converge to limiting partitions, deformations, and displacements, respectively. Whereas limiting deformations are simple laminates whose gradients only attain two values, the limiting displacements belong to the class of special functions with bounded variation (SBV). The latter feature elastic contributions measuring the distance to simple laminates, as well as jumps associated to two consecutive phase transitions having vanishing distance, and thus undetected by the limiting deformations. By $\\Gamma$- convergence we identify an effective limiting model given by the sum of a quadratic linearized elastic energy in terms of displacements along with two surface terms. The first one is proportional to the total length of interfaces created by jumps in the gradient of the limiting deformation. The second one is proportional to twice the total length of interfaces created by jumps in the limiting displacement, as well as by the boundaries of limiting partitions. A main tool of our analysis is a novel two-well rigidity estimate which has been derived in \\[Calc. Var. Partial Differential Equations 59, art. 44 (2020)] for a model with anisotropic second-order perturbation.","PeriodicalId":50003,"journal":{"name":"Journal of the European Mathematical Society","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/jems/1385","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper we consider nonlinearly elastic, frame-indifferent, and singularly perturbed two-well models for materials undergoing solid-solid phase transitions in any space dimensions, and we perform a simultaneous passage to sharp-interface and small-strain limits. Sequences of deformations with equibounded energies are decomposed via suitable Caccioppoli partitions into the sum of piecewise constant rigid movements and suitably rescaled displacements. These converge to limiting partitions, deformations, and displacements, respectively. Whereas limiting deformations are simple laminates whose gradients only attain two values, the limiting displacements belong to the class of special functions with bounded variation (SBV). The latter feature elastic contributions measuring the distance to simple laminates, as well as jumps associated to two consecutive phase transitions having vanishing distance, and thus undetected by the limiting deformations. By $\Gamma$- convergence we identify an effective limiting model given by the sum of a quadratic linearized elastic energy in terms of displacements along with two surface terms. The first one is proportional to the total length of interfaces created by jumps in the gradient of the limiting deformation. The second one is proportional to twice the total length of interfaces created by jumps in the limiting displacement, as well as by the boundaries of limiting partitions. A main tool of our analysis is a novel two-well rigidity estimate which has been derived in \[Calc. Var. Partial Differential Equations 59, art. 44 (2020)] for a model with anisotropic second-order perturbation.
固-固相变的双阱线性化
在本文中,我们考虑了在任何空间维度上经历固-固相变的材料的非线性弹性、框架无关和奇摄动两井模型,并同时通过了锐界面和小应变极限。通过适当的Caccioppoli分割,将具有等界能量的变形序列分解为分段恒定刚性运动和适当重标位移的总和。它们分别收敛于限制分区、变形和位移。极限变形是梯度只有两个值的简单层合,而极限位移属于一类有界变分的特殊函数。后者的特征是测量到简单层压板的距离的弹性贡献,以及与具有消失距离的两个连续相变相关的跳跃,因此无法被极限变形检测到。通过$\Gamma$-收敛,我们确定了一个有效的极限模型,该模型由二次线性化弹性能与两个表面项的位移之和给出。第一个与极限变形梯度中跳跃产生的界面的总长度成正比。第二个与极限位移的跳跃所产生的界面总长度的两倍成正比,也与极限分区的边界成正比。我们分析的一个主要工具是在Calc中导出的一种新的两井刚度估计。Var.偏微分方程59,art。[44(2020)]对于具有各向异性二阶扰动的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
103
审稿时长
6-12 weeks
期刊介绍: The Journal of the European Mathematical Society (JEMS) is the official journal of the EMS. The Society, founded in 1990, works at promoting joint scientific efforts between the many different structures that characterize European mathematics. JEMS will publish research articles in all active areas of pure and applied mathematics. These will be selected by a distinguished, international board of editors for their outstanding quality and interest, according to the highest international standards. Occasionally, substantial survey papers on topics of exceptional interest will also be published. Starting in 1999, the Journal was published by Springer-Verlag until the end of 2003. Since 2004 it is published by the EMS Publishing House. The first Editor-in-Chief of the Journal was J. Jost, succeeded by H. Brezis in 2004. The Journal of the European Mathematical Society is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信