Geochemical Study of Mineralization of the Thermo-Mineral Sources in the North East of Algeria

Q4 Environmental Science
Dounia Nechem, Mani Hannouche, Nabil Bougherira, Hicham Chaffai
{"title":"Geochemical Study of Mineralization of the Thermo-Mineral Sources in the North East of Algeria","authors":"Dounia Nechem, Mani Hannouche, Nabil Bougherira, Hicham Chaffai","doi":"10.12912/27197050/174005","DOIUrl":null,"url":null,"abstract":"The majority of thermal sources in northeastern of Algeria, is home to a large number of Hammams (spas) with high geothermal potential (El Tarf; Guelma, Souk Ahras, and Skikda). These thermal springs fall into the low temperature category (between 30°C and 150°C), however Hammam Debagh’s source being the warmest at about 90°C. Multiple field campaigns from 12 thermal springs were conducted in northeastern Algeria between 2020 and 2021 to highlight the geochemistry of these waters. The results show that these geologically protected waters have a totally stable geochemical composition, i.e., they have not undergone any chemical treatment or disinfection before being used thermally. Understanding the origin and mineralization of thermal waters in a continental Mediterranean environment is the focus of this investigation. The monitoring of physical indicators, including pH, temperature (°C), water conductivity, dissolved oxygen, flow, and turbidity, in conjunction with the use of the hydrochemical tool, chemical facies, and the saturation index, was done on the 12 of sites studied. Geological evidence has shown that these waters are typically found in deep aquifers and are subject to brittle tectonics. The find - ings of the investigations performed on the thermal waters revealed that for the evaporitic carbonated components, an enrichment in (Na +2 ) and in (Cl - ) mostly attributable to a geological origin, on the other hand, a depletion of halite (under-saturated) and to a lesser extent, gypsum.","PeriodicalId":52648,"journal":{"name":"Ecological Engineering Environmental Technology","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Engineering Environmental Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12912/27197050/174005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

The majority of thermal sources in northeastern of Algeria, is home to a large number of Hammams (spas) with high geothermal potential (El Tarf; Guelma, Souk Ahras, and Skikda). These thermal springs fall into the low temperature category (between 30°C and 150°C), however Hammam Debagh’s source being the warmest at about 90°C. Multiple field campaigns from 12 thermal springs were conducted in northeastern Algeria between 2020 and 2021 to highlight the geochemistry of these waters. The results show that these geologically protected waters have a totally stable geochemical composition, i.e., they have not undergone any chemical treatment or disinfection before being used thermally. Understanding the origin and mineralization of thermal waters in a continental Mediterranean environment is the focus of this investigation. The monitoring of physical indicators, including pH, temperature (°C), water conductivity, dissolved oxygen, flow, and turbidity, in conjunction with the use of the hydrochemical tool, chemical facies, and the saturation index, was done on the 12 of sites studied. Geological evidence has shown that these waters are typically found in deep aquifers and are subject to brittle tectonics. The find - ings of the investigations performed on the thermal waters revealed that for the evaporitic carbonated components, an enrichment in (Na +2 ) and in (Cl - ) mostly attributable to a geological origin, on the other hand, a depletion of halite (under-saturated) and to a lesser extent, gypsum.
阿尔及利亚东北部热矿产源成矿作用的地球化学研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ecological Engineering  Environmental Technology
Ecological Engineering Environmental Technology Environmental Science-Environmental Science (miscellaneous)
CiteScore
1.30
自引率
0.00%
发文量
159
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信