{"title":"Thermal treatment effect on the particle size distribution of alkaline earth metals hydroxyapatite","authors":"Volodymyr Diichuk, Iryna Diichuk","doi":"10.58332/scirad2023v2i4a01","DOIUrl":null,"url":null,"abstract":"Hydroxyapatites of certain alkaline earth metals were synthesised, and their phase composition was determined using X-ray phase analysis. Thermal modification of the studied compounds was performed at temperatures not exceeding 800°C. The laser diffraction method determined the size distribution of the samples subjected to thermal treatment. It was found that the mean particle size ranged from 5,48±1,28 to 126,71±3,68 μm. It has been demonstrated that particle aggregation and fragmentation processes are possible depending on the synthesised compounds' qualitative and quantitative phase composition and the modification temperature.","PeriodicalId":487012,"journal":{"name":"Scientiae Radices","volume":"57 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientiae Radices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58332/scirad2023v2i4a01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Hydroxyapatites of certain alkaline earth metals were synthesised, and their phase composition was determined using X-ray phase analysis. Thermal modification of the studied compounds was performed at temperatures not exceeding 800°C. The laser diffraction method determined the size distribution of the samples subjected to thermal treatment. It was found that the mean particle size ranged from 5,48±1,28 to 126,71±3,68 μm. It has been demonstrated that particle aggregation and fragmentation processes are possible depending on the synthesised compounds' qualitative and quantitative phase composition and the modification temperature.