2‐Selmer parity for hyperelliptic curves in quadratic extensions

IF 1.5 1区 数学 Q1 MATHEMATICS
Adam Morgan
{"title":"2‐Selmer parity for hyperelliptic curves in quadratic extensions","authors":"Adam Morgan","doi":"10.1112/plms.12565","DOIUrl":null,"url":null,"abstract":"Abstract We study the 2‐parity conjecture for Jacobians of hyperelliptic curves over number fields. Under some mild assumptions on their reduction, we prove the conjecture over quadratic extensions of the base field. The proof proceeds via a generalisation of a formula of Kramer and Tunnell relating local invariants of the curve, which may be of independent interest. A new feature of this generalisation is the appearance of terms which govern whether or not the Cassels–Tate pairing on the Jacobian is alternating, which first appeared in work of Poonen–Stoll. We establish the local formula in many instances and show that in remaining cases, it follows from standard global conjectures.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":"35 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/plms.12565","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

Abstract

Abstract We study the 2‐parity conjecture for Jacobians of hyperelliptic curves over number fields. Under some mild assumptions on their reduction, we prove the conjecture over quadratic extensions of the base field. The proof proceeds via a generalisation of a formula of Kramer and Tunnell relating local invariants of the curve, which may be of independent interest. A new feature of this generalisation is the appearance of terms which govern whether or not the Cassels–Tate pairing on the Jacobian is alternating, which first appeared in work of Poonen–Stoll. We establish the local formula in many instances and show that in remaining cases, it follows from standard global conjectures.
二次扩展中超椭圆曲线的2‐Selmer宇称
研究了数域上超椭圆曲线雅可比矩阵的2‐宇称猜想。在对其约化的一些温和假设下,我们证明了基域二次扩展上的猜想。证明通过推广Kramer和Tunnell关于曲线的局部不变量的公式来进行,这可能是独立的兴趣。这种推广的一个新特点是出现了控制雅可比矩阵上的Cassels-Tate配对是否交替的项,这在Poonen-Stoll的工作中首次出现。我们在许多情况下建立了局部公式,并表明在其余情况下,它遵循标准的全局猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信