{"title":"Games with filters I","authors":"Matthew Foreman, Menachem Magidor, Martin Zeman","doi":"10.1142/s021906132450003x","DOIUrl":null,"url":null,"abstract":"This paper has two parts. The first is concerned with a variant of a family of games introduced by Holy and Schlicht, that we call Welch games. Player II having a winning strategy in the Welch game of length [Formula: see text] on [Formula: see text] is equivalent to weak compactness. Winning the game of length [Formula: see text] is equivalent to [Formula: see text] being measurable. We show that for games of intermediate length [Formula: see text], II winning implies the existence of precipitous ideals with [Formula: see text]-closed, [Formula: see text]-dense trees. The second part shows the first is not vacuous. For each [Formula: see text] between [Formula: see text] and [Formula: see text], it gives a model where II wins the games of length [Formula: see text], but not [Formula: see text]. The technique also gives models where for all [Formula: see text] there are [Formula: see text]-complete, normal, [Formula: see text]-distributive ideals having dense sets that are [Formula: see text]-closed, but not [Formula: see text]-closed.","PeriodicalId":50144,"journal":{"name":"Journal of Mathematical Logic","volume":"21 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s021906132450003x","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper has two parts. The first is concerned with a variant of a family of games introduced by Holy and Schlicht, that we call Welch games. Player II having a winning strategy in the Welch game of length [Formula: see text] on [Formula: see text] is equivalent to weak compactness. Winning the game of length [Formula: see text] is equivalent to [Formula: see text] being measurable. We show that for games of intermediate length [Formula: see text], II winning implies the existence of precipitous ideals with [Formula: see text]-closed, [Formula: see text]-dense trees. The second part shows the first is not vacuous. For each [Formula: see text] between [Formula: see text] and [Formula: see text], it gives a model where II wins the games of length [Formula: see text], but not [Formula: see text]. The technique also gives models where for all [Formula: see text] there are [Formula: see text]-complete, normal, [Formula: see text]-distributive ideals having dense sets that are [Formula: see text]-closed, but not [Formula: see text]-closed.
期刊介绍:
The Journal of Mathematical Logic (JML) provides an important forum for the communication of original contributions in all areas of mathematical logic and its applications. It aims at publishing papers at the highest level of mathematical creativity and sophistication. JML intends to represent the most important and innovative developments in the subject.