Games with filters I

IF 0.9 1区 数学 Q1 LOGIC
Matthew Foreman, Menachem Magidor, Martin Zeman
{"title":"Games with filters I","authors":"Matthew Foreman, Menachem Magidor, Martin Zeman","doi":"10.1142/s021906132450003x","DOIUrl":null,"url":null,"abstract":"This paper has two parts. The first is concerned with a variant of a family of games introduced by Holy and Schlicht, that we call Welch games. Player II having a winning strategy in the Welch game of length [Formula: see text] on [Formula: see text] is equivalent to weak compactness. Winning the game of length [Formula: see text] is equivalent to [Formula: see text] being measurable. We show that for games of intermediate length [Formula: see text], II winning implies the existence of precipitous ideals with [Formula: see text]-closed, [Formula: see text]-dense trees. The second part shows the first is not vacuous. For each [Formula: see text] between [Formula: see text] and [Formula: see text], it gives a model where II wins the games of length [Formula: see text], but not [Formula: see text]. The technique also gives models where for all [Formula: see text] there are [Formula: see text]-complete, normal, [Formula: see text]-distributive ideals having dense sets that are [Formula: see text]-closed, but not [Formula: see text]-closed.","PeriodicalId":50144,"journal":{"name":"Journal of Mathematical Logic","volume":"21 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s021906132450003x","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper has two parts. The first is concerned with a variant of a family of games introduced by Holy and Schlicht, that we call Welch games. Player II having a winning strategy in the Welch game of length [Formula: see text] on [Formula: see text] is equivalent to weak compactness. Winning the game of length [Formula: see text] is equivalent to [Formula: see text] being measurable. We show that for games of intermediate length [Formula: see text], II winning implies the existence of precipitous ideals with [Formula: see text]-closed, [Formula: see text]-dense trees. The second part shows the first is not vacuous. For each [Formula: see text] between [Formula: see text] and [Formula: see text], it gives a model where II wins the games of length [Formula: see text], but not [Formula: see text]. The technique also gives models where for all [Formula: see text] there are [Formula: see text]-complete, normal, [Formula: see text]-distributive ideals having dense sets that are [Formula: see text]-closed, but not [Formula: see text]-closed.
带有过滤器的游戏1
本文分为两部分。第一个是Holy和Schlicht引入的游戏系列的变体,我们称之为Welch游戏。在Welch博弈中,玩家II的获胜策略长度为[公式:参见文本],相当于弱紧凑性。赢得游戏长度[公式:见文本]等同于[公式:见文本]是可测量的。我们表明,对于中等长度的游戏,获胜意味着存在险峻的理想,即[公式:见文本]-封闭,[公式:见文本]-密集树。第二部分表明第一部分不是空洞的。对于[公式:见文本]和[公式:见文本]之间的每个[公式:见文本],它给出了一个模型,其中II赢得了长度游戏[公式:见文本],但不是[公式:见文本]。该技术还提供了模型,其中对于所有[公式:见文]存在[公式:见文]-完全,正常,[公式:见文]-分布理想具有密集集,[公式:见文]-封闭,但不是[公式:见文]-封闭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematical Logic
Journal of Mathematical Logic MATHEMATICS-LOGIC
CiteScore
1.60
自引率
11.10%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Logic (JML) provides an important forum for the communication of original contributions in all areas of mathematical logic and its applications. It aims at publishing papers at the highest level of mathematical creativity and sophistication. JML intends to represent the most important and innovative developments in the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信