Biosensor response to multi-component mixtures statistical analysis and forecasting

Romas Baronas, Sigitas Būda, Feliksas Ivanauskas, Pranas Vaitkus
{"title":"Biosensor response to multi-component mixtures statistical analysis and forecasting","authors":"Romas Baronas, Sigitas Būda, Feliksas Ivanauskas, Pranas Vaitkus","doi":"10.15388/lmr.2006.30739","DOIUrl":null,"url":null,"abstract":"This paper deals with an analysis of the electrochemical biosensors and their response to multi-component mixtures. The main task is to build a mathematical model for estimation the concentration of each mixture component from the biosensor response data. Two different types of biosensors: amperometric and potenciometric are analysed. Due to high dimensionality of biosensor output data the principal component analysis is applied. Additional multivariate analysis of variance is used to analyze the response sensitivity of each biosensor type. Finally a concentration estimation model based on ensemble of neural networks is presented.","PeriodicalId":33611,"journal":{"name":"Lietuvos Matematikos Rinkinys","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lietuvos Matematikos Rinkinys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15388/lmr.2006.30739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with an analysis of the electrochemical biosensors and their response to multi-component mixtures. The main task is to build a mathematical model for estimation the concentration of each mixture component from the biosensor response data. Two different types of biosensors: amperometric and potenciometric are analysed. Due to high dimensionality of biosensor output data the principal component analysis is applied. Additional multivariate analysis of variance is used to analyze the response sensitivity of each biosensor type. Finally a concentration estimation model based on ensemble of neural networks is presented.
生物传感器对多组分混合物的响应统计分析与预测
本文分析了电化学生物传感器及其对多组分混合物的响应。主要任务是根据生物传感器的响应数据建立一个数学模型来估计每种混合物成分的浓度。分析了两种不同类型的生物传感器:安培传感器和电位传感器。由于生物传感器输出数据的高维数,应用主成分分析。附加的多变量方差分析用于分析每种生物传感器类型的响应灵敏度。最后提出了一种基于神经网络集成的浓度估计模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信