Klasifikasi Rentang Usia Dan Gender Dengan Deteksi Suara Menggunakan Metode Deep Learning Algoritma Cnn (Convolutional Neural Network)

Vita Karenina, Moh Fiqih Erinsyah, Dega Surono Wibowo
{"title":"Klasifikasi Rentang Usia Dan Gender Dengan Deteksi Suara Menggunakan Metode Deep Learning Algoritma Cnn (Convolutional Neural Network)","authors":"Vita Karenina, Moh Fiqih Erinsyah, Dega Surono Wibowo","doi":"10.34010/komputika.v12i2.10516","DOIUrl":null,"url":null,"abstract":"The research discusses the identification of human voices based on gender by utilizing the differences in voice characteristics between males and females. In addition to differences in vocal tract size, factors such as length, thickness, and stiffness of the vocal cords also play a role in producing the differences in fundamental frequency between the two genders. Fundamental frequency serves as an indicator used in acoustic analysis to classify gender based on voice. In the automatic classification of voices, sound processing techniques and machine learning are key in system development. Gender recognition methods based on voice involve acoustic analysis using voice features such as fundamental frequency, formants, duration, intensity, and intonation patterns. Diverse voice datasets containing recordings of both male and female voices are used to train gender recognition models. From the results of research from modeling using CNN on audio to get 92% accuracy and for testing results it is good enough in classifying.
 Keywords – Deep Learning, Voice Recognition, Audio Classification, CNN, Gender","PeriodicalId":52813,"journal":{"name":"Komputika","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Komputika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34010/komputika.v12i2.10516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The research discusses the identification of human voices based on gender by utilizing the differences in voice characteristics between males and females. In addition to differences in vocal tract size, factors such as length, thickness, and stiffness of the vocal cords also play a role in producing the differences in fundamental frequency between the two genders. Fundamental frequency serves as an indicator used in acoustic analysis to classify gender based on voice. In the automatic classification of voices, sound processing techniques and machine learning are key in system development. Gender recognition methods based on voice involve acoustic analysis using voice features such as fundamental frequency, formants, duration, intensity, and intonation patterns. Diverse voice datasets containing recordings of both male and female voices are used to train gender recognition models. From the results of research from modeling using CNN on audio to get 92% accuracy and for testing results it is good enough in classifying. Keywords – Deep Learning, Voice Recognition, Audio Classification, CNN, Gender
使用深度学习算法Cnn (Cnn)对年龄和性别的分类。
该研究利用男性和女性声音特征的差异,探讨了基于性别的人类声音识别。除了声道大小的差异外,声带的长度、厚度、硬度等因素也会导致两性在基频上的差异。基频是声学分析中根据声音进行性别分类的指标。在语音自动分类中,声音处理技术和机器学习是系统开发的关键。基于语音的性别识别方法包括使用语音特征(如基频、共振峰、持续时间、强度和语调模式)进行声学分析。包含男声和女声录音的各种语音数据集用于训练性别识别模型。从研究结果来看,利用CNN对音频进行建模,准确率达到92%,从测试结果来看,它在分类方面已经足够好了。 关键词:深度学习,语音识别,音频分类,CNN,性别
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
25
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信