POTENTIAL USE OF COLTAN MINING WASTE ROCK IN ROAD CONSTRUCTION

IF 0.8 Q4 ENGINEERING, CIVIL
Alinabiwe Nyamuhanga Ally, Manjia Marcelline Blanche, Masika Muhiwa Grâce, Elodie Rufine Zang, Ngapgue François, Chrispin Pettang
{"title":"POTENTIAL USE OF COLTAN MINING WASTE ROCK IN ROAD CONSTRUCTION","authors":"Alinabiwe Nyamuhanga Ally, Manjia Marcelline Blanche, Masika Muhiwa Grâce, Elodie Rufine Zang, Ngapgue François, Chrispin Pettang","doi":"10.13167/2023.27.2","DOIUrl":null,"url":null,"abstract":"The mining industry produces vast quantities of mine refuse, including waste rock and tailings, which pose a significant environmental problem. Mining residues, which are generated during ore extraction and mineral processing, are typically deposited near mines. This method of mine waste disposal can lead to environmental problems and land loss. This fact has prompted research into the utilisation of sediments as alternative materials to produce backfill and paving materials. The Democratic Republic of the Congo (DRC) possesses approximately 80 % of Africa’s coltan reserves, which is geologically unsustainable considering its many mineral resources. When coltan is extracted, geologically heterogeneous debris spanning from fine particles to boulders is produced. The purpose of this study was to analyse the potential value of mine tailings in road embankments using coltan waste rock from the eastern DRC as a case study, in accordance with the French standard. To accomplish this, it was necessary to evaluate the coltan waste rock’s chemical, mineralogical, and geotechnical properties. The coltan mining waste rock studied (SS1,i, SS2,i, and SS3,i) were found to be naturally clayey in nature, with characteristics for use in road construction. However, stabilised at 60 % by the SS4, classified as sand according to the Laboratoire Central des Ponts et Chaussées (LCPC) classification, the SS1,i, SS2,i, and SS3,i clayey waste rock possess the necessary characteristics for sub-base course materials.","PeriodicalId":29665,"journal":{"name":"Advances in Civil and Architectural Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Civil and Architectural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13167/2023.27.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The mining industry produces vast quantities of mine refuse, including waste rock and tailings, which pose a significant environmental problem. Mining residues, which are generated during ore extraction and mineral processing, are typically deposited near mines. This method of mine waste disposal can lead to environmental problems and land loss. This fact has prompted research into the utilisation of sediments as alternative materials to produce backfill and paving materials. The Democratic Republic of the Congo (DRC) possesses approximately 80 % of Africa’s coltan reserves, which is geologically unsustainable considering its many mineral resources. When coltan is extracted, geologically heterogeneous debris spanning from fine particles to boulders is produced. The purpose of this study was to analyse the potential value of mine tailings in road embankments using coltan waste rock from the eastern DRC as a case study, in accordance with the French standard. To accomplish this, it was necessary to evaluate the coltan waste rock’s chemical, mineralogical, and geotechnical properties. The coltan mining waste rock studied (SS1,i, SS2,i, and SS3,i) were found to be naturally clayey in nature, with characteristics for use in road construction. However, stabilised at 60 % by the SS4, classified as sand according to the Laboratoire Central des Ponts et Chaussées (LCPC) classification, the SS1,i, SS2,i, and SS3,i clayey waste rock possess the necessary characteristics for sub-base course materials.
钶钽铁矿废石在道路建设中的潜在应用
采矿业产生了大量的矿渣,包括废石和尾矿,造成了严重的环境问题。采矿残留物是在矿石提取和矿物加工过程中产生的,通常沉积在矿山附近。这种矿山废弃物处理方法会导致环境问题和土地流失。这一事实促使人们研究利用沉积物作为替代材料来生产回填和铺路材料。刚果民主共和国(DRC)拥有非洲约80%的钶钽铁矿储量,考虑到其众多矿产资源,这在地质上是不可持续的。当提取钶钽铁矿时,会产生从细颗粒到巨石不等的地质不均匀碎屑。本研究的目的是根据法国标准,以刚果民主共和国东部的钶钽铁矿废石为例,分析矿山尾矿在道路路堤中的潜在价值。为了实现这一目标,有必要评估钶钽铁矿废石的化学、矿物学和岩土力学性质。所研究的钶钽铁矿废石(SS1,i, SS2,i和SS3,i)在性质上是天然粘土,具有用于道路建设的特性。然而,SS4稳定在60%,根据laboratory Central des Ponts et chauss (LCPC)分类归类为砂,SS1、i、SS2、i和SS3、i粘土废石具有亚基层材料的必要特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信