{"title":"ACEANet: Ambiguous Context Enhanced Attention Network for skin lesion segmentation","authors":"Yun Jiang, Hao Qiao","doi":"10.3233/ida-230298","DOIUrl":null,"url":null,"abstract":"Skin lesion segmentation from dermatoscopic images is essential for the diagnosis of skin cancer. However, it is still a challenging task due to the ambiguity of the skin lesions, the irregular shape of the lesions and the presence of various interfering factors. In this paper, we propose a novel Ambiguous Context Enhanced Attention Network (ACEANet) based on the classical encoder-decoder architecture, which is able to accurately and reliably segment a variety of lesions with efficiency. Specifically, a novel Ambiguous Context Enhanced Attention module is embedded in the skip connection to augment the ambiguous boundary information. A Dilated Gated Fusion block is employed in the end of the encoding phase, which effectively reduces the loss of spatial location information due to continuous downsampling. In addition, we propose a novel Cascading Global Context Attention to fuse feature information generated by the encoder with features generated by the decoder of the corresponding layer. In order to verify the effectiveness and advantages of the proposed network, we have performed comparative experiments on ISIC2018 dataset and PH2 dataset. Experiments results demonstrate that the proposed model has superior segmentation performance for skin lesions.","PeriodicalId":50355,"journal":{"name":"Intelligent Data Analysis","volume":"146 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Data Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ida-230298","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Skin lesion segmentation from dermatoscopic images is essential for the diagnosis of skin cancer. However, it is still a challenging task due to the ambiguity of the skin lesions, the irregular shape of the lesions and the presence of various interfering factors. In this paper, we propose a novel Ambiguous Context Enhanced Attention Network (ACEANet) based on the classical encoder-decoder architecture, which is able to accurately and reliably segment a variety of lesions with efficiency. Specifically, a novel Ambiguous Context Enhanced Attention module is embedded in the skip connection to augment the ambiguous boundary information. A Dilated Gated Fusion block is employed in the end of the encoding phase, which effectively reduces the loss of spatial location information due to continuous downsampling. In addition, we propose a novel Cascading Global Context Attention to fuse feature information generated by the encoder with features generated by the decoder of the corresponding layer. In order to verify the effectiveness and advantages of the proposed network, we have performed comparative experiments on ISIC2018 dataset and PH2 dataset. Experiments results demonstrate that the proposed model has superior segmentation performance for skin lesions.
期刊介绍:
Intelligent Data Analysis provides a forum for the examination of issues related to the research and applications of Artificial Intelligence techniques in data analysis across a variety of disciplines. These techniques include (but are not limited to): all areas of data visualization, data pre-processing (fusion, editing, transformation, filtering, sampling), data engineering, database mining techniques, tools and applications, use of domain knowledge in data analysis, big data applications, evolutionary algorithms, machine learning, neural nets, fuzzy logic, statistical pattern recognition, knowledge filtering, and post-processing. In particular, papers are preferred that discuss development of new AI related data analysis architectures, methodologies, and techniques and their applications to various domains.