A structure theorem for elliptic and parabolic operators with applications to homogenization of operators of Kolmogorov type

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Malte Litsgård, Kaj Nyström
{"title":"A structure theorem for elliptic and parabolic operators with applications to homogenization of operators of Kolmogorov type","authors":"Malte Litsgård, Kaj Nyström","doi":"10.2140/apde.2023.16.1547","DOIUrl":null,"url":null,"abstract":"We consider the operators \\[ \\nabla_X\\cdot(A(X)\\nabla_X),\\ \\nabla_X\\cdot(A(X)\\nabla_X)-\\partial_t,\\ \\nabla_X\\cdot(A(X)\\nabla_X)+X\\cdot\\nabla_Y-\\partial_t, \\] where $X\\in \\Omega$, $(X,t)\\in \\Omega\\times \\mathbb R$ and $(X,Y,t)\\in \\Omega\\times \\mathbb R^m\\times \\mathbb R$, respectively, and where $\\Omega\\subset\\mathbb R^m$ is a (unbounded) Lipschitz domain with defining function $\\psi:\\mathbb R^{m-1}\\to\\mathbb R$ being Lipschitz with constant bounded by $M$. Assume that the elliptic measure associated to the first of these operators is mutually absolutely continuous with respect to the surface measure $\\mathrm{d} \\sigma(X)$, and that the corresponding Radon-Nikodym derivative or Poisson kernel satisfies a scale invariant reverse H\\\"older inequalities in $L^p$, for some fixed $p$, $1<p<\\infty$, with constants depending only on the constants of $A$, $m$ and the Lipschitz constant of $\\psi$, $M$. Under this assumption we prove that then the same conclusions are also true for the parabolic measures associated to the second and third operator with $\\mathrm{d} \\sigma(X)$ replaced by the surface measures $\\mathrm{d} \\sigma(X)\\mathrm{d} t$ and $\\mathrm{d} \\sigma(X)\\mathrm{d} Y\\mathrm{d} t$, respectively. This structural theorem allows us to reprove several results previously established in the literature as well as to deduce new results in, for example, the context of homogenization for operators of Kolmogorov type. Our proof of the structural theorem is based on recent results established by the authors concerning boundary Harnack inequalities for operators of Kolmogorov type in divergence form with bounded, measurable and uniformly elliptic coefficients.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/apde.2023.16.1547","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the operators \[ \nabla_X\cdot(A(X)\nabla_X),\ \nabla_X\cdot(A(X)\nabla_X)-\partial_t,\ \nabla_X\cdot(A(X)\nabla_X)+X\cdot\nabla_Y-\partial_t, \] where $X\in \Omega$, $(X,t)\in \Omega\times \mathbb R$ and $(X,Y,t)\in \Omega\times \mathbb R^m\times \mathbb R$, respectively, and where $\Omega\subset\mathbb R^m$ is a (unbounded) Lipschitz domain with defining function $\psi:\mathbb R^{m-1}\to\mathbb R$ being Lipschitz with constant bounded by $M$. Assume that the elliptic measure associated to the first of these operators is mutually absolutely continuous with respect to the surface measure $\mathrm{d} \sigma(X)$, and that the corresponding Radon-Nikodym derivative or Poisson kernel satisfies a scale invariant reverse H\"older inequalities in $L^p$, for some fixed $p$, $1
椭圆型和抛物型算子的结构定理及其在Kolmogorov型算子均匀化中的应用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信