{"title":"Water–energy–food Nexus based on a new perspective of regional sustainable development","authors":"Mocheng Zhu","doi":"10.2166/ws.2023.281","DOIUrl":null,"url":null,"abstract":"Abstract By constructing a regional water–energy–food interaction model, from the perspectives of supply and demand, this study has revealed both the coupling and synergistic effects of the three major elements of water–energy–food at the regional level and the interaction between internal and external resources in the region, and explored the sustainable development of the region under the association of the three major elements of water–energy–food. In this paper, the energy supply and demand measurement model and the optimal regional total cost measurement model were used to optimize the regional total cost measurement. This paper briefly introduces the concepts, application scope, and limitations of scenario analysis. Because the future development of society is very uncertain, it is a very useful tool for predicting and calculating the future scenario and sustainable development of the region. Agricultural water accounted for 55% of the total water resources, and industrial water accounted for 18%. This paper took the main grain-producing areas as an example and enriched the existing research on the water–energy–food relationship to a certain extent by analyzing the current situation and influencing factors of the synergistic development of water–energy–food systems, offering reference to the subsequent related research.","PeriodicalId":23573,"journal":{"name":"Water Science & Technology: Water Supply","volume":"40 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science & Technology: Water Supply","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/ws.2023.281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract By constructing a regional water–energy–food interaction model, from the perspectives of supply and demand, this study has revealed both the coupling and synergistic effects of the three major elements of water–energy–food at the regional level and the interaction between internal and external resources in the region, and explored the sustainable development of the region under the association of the three major elements of water–energy–food. In this paper, the energy supply and demand measurement model and the optimal regional total cost measurement model were used to optimize the regional total cost measurement. This paper briefly introduces the concepts, application scope, and limitations of scenario analysis. Because the future development of society is very uncertain, it is a very useful tool for predicting and calculating the future scenario and sustainable development of the region. Agricultural water accounted for 55% of the total water resources, and industrial water accounted for 18%. This paper took the main grain-producing areas as an example and enriched the existing research on the water–energy–food relationship to a certain extent by analyzing the current situation and influencing factors of the synergistic development of water–energy–food systems, offering reference to the subsequent related research.