{"title":"Research on preparation and properties of porous ceramsites sintered with high-ash coal slime","authors":"Dan Zhu, Fanfei Min, Wenbao Lv","doi":"10.37190/ppmp/172665","DOIUrl":null,"url":null,"abstract":"In order to realize the resource and harmless utilization of high-ash coal slime in coal preparation plants, porous ceramsites were prepared by the high-temperature sintering method with coal slime as raw material. The influences of sintering temperature, sintering time and ash content on the properties of porous ceramsites were studied by experiments, and the phase composition, micro-morphology and pore structure characteristics of ceramsites were analyzed by XRD, SEM and BET. The experimental results showed that with the increase of sintering temperature and sintering time, the amount of molten liquid in ceramsite green bodies increased, the densification degree of ceramsites increased gradually, the bulk density and the apparent density increased gradually, and the water absorption and the apparent porosity decreased gradually. However, with the increase of coal slime ash content, the quantity of pores within ceramsites increased first and then decreased. When the coal slime ash content was 55%, the bulk density of porous ceramsite sample was 0.549g/cm3, the water absorption rate was 64.63%, the specific surface area was 19.40m2/g, the crushing rate and wear rate were 0.14%, with rough surface, porous structure and excellent water absorption performance, which met the optimum performance requirements of porous ceramsites. At the same time, this research also provides a new idea and method for the reuse of high-ash coal slime resource, a by-product of coal washing and dressing","PeriodicalId":49137,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":"3 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physicochemical Problems of Mineral Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37190/ppmp/172665","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In order to realize the resource and harmless utilization of high-ash coal slime in coal preparation plants, porous ceramsites were prepared by the high-temperature sintering method with coal slime as raw material. The influences of sintering temperature, sintering time and ash content on the properties of porous ceramsites were studied by experiments, and the phase composition, micro-morphology and pore structure characteristics of ceramsites were analyzed by XRD, SEM and BET. The experimental results showed that with the increase of sintering temperature and sintering time, the amount of molten liquid in ceramsite green bodies increased, the densification degree of ceramsites increased gradually, the bulk density and the apparent density increased gradually, and the water absorption and the apparent porosity decreased gradually. However, with the increase of coal slime ash content, the quantity of pores within ceramsites increased first and then decreased. When the coal slime ash content was 55%, the bulk density of porous ceramsite sample was 0.549g/cm3, the water absorption rate was 64.63%, the specific surface area was 19.40m2/g, the crushing rate and wear rate were 0.14%, with rough surface, porous structure and excellent water absorption performance, which met the optimum performance requirements of porous ceramsites. At the same time, this research also provides a new idea and method for the reuse of high-ash coal slime resource, a by-product of coal washing and dressing
期刊介绍:
Physicochemical Problems of Mineral Processing is an international, open access journal which covers theoretical approaches and their practical applications in all aspects of mineral processing and extractive metallurgy.
Criteria for publication in the Physicochemical Problems of Mineral Processing journal are novelty, quality and current interest. Manuscripts which only make routine use of minor extensions to well established methodologies are not appropriate for the journal.
Topics of interest
Analytical techniques and applied mineralogy
Computer applications
Comminution, classification and sorting
Froth flotation
Solid-liquid separation
Gravity concentration
Magnetic and electric separation
Hydro and biohydrometallurgy
Extractive metallurgy
Recycling and mineral wastes
Environmental aspects of mineral processing
and other mineral processing related subjects.