Self-sensing magnetic actuators of bilayer hydrogels

IF 4.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shengyuan Zhang, Huangsan Wei, Jingda Tang
{"title":"Self-sensing magnetic actuators of bilayer hydrogels","authors":"Shengyuan Zhang, Huangsan Wei, Jingda Tang","doi":"10.1080/19475411.2023.2257616","DOIUrl":null,"url":null,"abstract":"Hard magnetic soft robots have been widely used in biomedical engineering. In these applications, it is crucial to sense the movement of soft robots and their interaction with target objects. Here, we propose a strategy to fabricate a self-sensing bilayer actuator by combining magnetic and ionic conductive hydrogels. The magnetic hydrogel containing NdFeB particles exhibits rapid response to magnetic field and achieve bending deformation. Meanwhile, the polyacrylamide (PAAm) hydrogel with lithium chloride (LiCl) allows for the sensing of deformation. The bending behavior of the bilayer under magnetic field is well captured by theoretical and simulated models. Additionally, the bilayer strain sensor shows good sensitivity, stability and can endure a wide-range cyclic stretching (0–300%). These merits qualify the self-sensing actuator to monitor the motion signals, such as bending of fingers and grasping process of an intelligent gripper. When subject to an external magnetic field, the gripper can grab a cube and sense the resistance change simultaneously to detect the object size. This work may provide a versatile strategy to integrate actuating and self-sensing ability in soft robots.","PeriodicalId":48516,"journal":{"name":"International Journal of Smart and Nano Materials","volume":"63 1","pages":"0"},"PeriodicalIF":4.5000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Smart and Nano Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19475411.2023.2257616","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hard magnetic soft robots have been widely used in biomedical engineering. In these applications, it is crucial to sense the movement of soft robots and their interaction with target objects. Here, we propose a strategy to fabricate a self-sensing bilayer actuator by combining magnetic and ionic conductive hydrogels. The magnetic hydrogel containing NdFeB particles exhibits rapid response to magnetic field and achieve bending deformation. Meanwhile, the polyacrylamide (PAAm) hydrogel with lithium chloride (LiCl) allows for the sensing of deformation. The bending behavior of the bilayer under magnetic field is well captured by theoretical and simulated models. Additionally, the bilayer strain sensor shows good sensitivity, stability and can endure a wide-range cyclic stretching (0–300%). These merits qualify the self-sensing actuator to monitor the motion signals, such as bending of fingers and grasping process of an intelligent gripper. When subject to an external magnetic field, the gripper can grab a cube and sense the resistance change simultaneously to detect the object size. This work may provide a versatile strategy to integrate actuating and self-sensing ability in soft robots.
双层水凝胶的自传感磁致动器
硬磁软机器人在生物医学工程中有着广泛的应用。在这些应用中,感知软体机器人的运动及其与目标物体的交互是至关重要的。在此,我们提出了一种结合磁性和离子导电水凝胶制备自传感双层致动器的策略。含钕铁硼的磁性水凝胶对磁场的响应速度快,可实现弯曲变形。同时,含有氯化锂(LiCl)的聚丙烯酰胺(PAAm)水凝胶可以感知变形。理论模型和模拟模型都很好地反映了双分子层在磁场作用下的弯曲行为。此外,双层应变传感器具有良好的灵敏度和稳定性,可以承受大范围的循环拉伸(0-300%)。这些优点使自传感作动器能够监测智能抓手的手指弯曲和抓取过程等运动信号。当受到外部磁场的影响时,抓手可以抓住一个立方体,同时感知电阻的变化,以检测物体的大小。这项工作为软机器人的驱动和自感知能力的集成提供了一种通用的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Smart and Nano Materials
International Journal of Smart and Nano Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.30
自引率
5.10%
发文量
39
审稿时长
11 weeks
期刊介绍: The central aim of International Journal of Smart and Nano Materials is to publish original results, critical reviews, technical discussion, and book reviews related to this compelling research field: smart and nano materials, and their applications. The papers published in this journal will provide cutting edge information and instructive research guidance, encouraging more scientists to make their contribution to this dynamic research field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信