Stochastic fractional differential inclusion driven by fractional Brownian motion

IF 0.3 Q4 STATISTICS & PROBABILITY
Rahma Yasmina Moulay Hachemi, Toufik Guendouzi
{"title":"Stochastic fractional differential inclusion driven by fractional Brownian motion","authors":"Rahma Yasmina Moulay Hachemi, Toufik Guendouzi","doi":"10.1515/rose-2023-2012","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we prove the existence result for a mild solution of a fractional stochastic evolution inclusion involving the Caputo derivative in the Hilbert space driven by a fractional Brownian motion with the Hurst parameter <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>H</m:mi> <m:mo>&gt;</m:mo> <m:mfrac> <m:mn>1</m:mn> <m:mn>2</m:mn> </m:mfrac> </m:mrow> </m:math> {H&gt;\\frac{1}{2}} . The results are obtained by using fractional calculation, operator semigroups and the fixed point theorem for multivalued mappings.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"48 2","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2023-2012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we prove the existence result for a mild solution of a fractional stochastic evolution inclusion involving the Caputo derivative in the Hilbert space driven by a fractional Brownian motion with the Hurst parameter H > 1 2 {H>\frac{1}{2}} . The results are obtained by using fractional calculation, operator semigroups and the fixed point theorem for multivalued mappings.
由分数布朗运动驱动的随机分数微分包涵
摘要在具有Hurst参数H >的分数阶布朗运动驱动下,证明了包含Caputo导数的分数阶随机演化包含在Hilbert空间中温和解的存在性结果;1 2 {H>\frac{1}{2}}。利用分数计算、算子半群和多值映射的不动点定理得到了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信