{"title":"Cross-dimensional valley excitons from Förster coupling in arbitrarily twisted stacks of monolayer semiconductors","authors":"C. Li, Wang Yao","doi":"10.1088/2053-1583/ad0403","DOIUrl":null,"url":null,"abstract":"Abstract In stacks of transition metal dichalcogenide monolayers with arbitrary twisting angles, we explore a new class of bright excitons arising from the pronounced Förster coupling, whose dimensionality is tuned by its in-plane momentum. The low energy sector at small momenta is two-dimensional, featuring a Mexican Hat dispersion, while the high energy sector at larger momenta becomes three-dimensional (3D) with sizable group velocity both in-plane and out-of-plane. By choices of the spacer thickness, versatile surface or interface exciton modes localized at designated layers can emerge out of the cross-dimensional bulk dispersion for a topological origin, which can be mapped to the Su–Schrieffer–Heeger soliton. Moreover, step-edges in spacers can be exploited for engineering lateral interfaces to enable interlayer communication of the topological interface exciton. Combined with the polarization selection rule inherited from the monolayer building block, these exotic exciton properties open up new opportunities for multilayer design towards 3D integration of valley exciton optoelectronics.","PeriodicalId":6812,"journal":{"name":"2D Materials","volume":"51 11","pages":"0"},"PeriodicalIF":4.5000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2D Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2053-1583/ad0403","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract In stacks of transition metal dichalcogenide monolayers with arbitrary twisting angles, we explore a new class of bright excitons arising from the pronounced Förster coupling, whose dimensionality is tuned by its in-plane momentum. The low energy sector at small momenta is two-dimensional, featuring a Mexican Hat dispersion, while the high energy sector at larger momenta becomes three-dimensional (3D) with sizable group velocity both in-plane and out-of-plane. By choices of the spacer thickness, versatile surface or interface exciton modes localized at designated layers can emerge out of the cross-dimensional bulk dispersion for a topological origin, which can be mapped to the Su–Schrieffer–Heeger soliton. Moreover, step-edges in spacers can be exploited for engineering lateral interfaces to enable interlayer communication of the topological interface exciton. Combined with the polarization selection rule inherited from the monolayer building block, these exotic exciton properties open up new opportunities for multilayer design towards 3D integration of valley exciton optoelectronics.
期刊介绍:
2D Materials is a multidisciplinary, electronic-only journal devoted to publishing fundamental and applied research of the highest quality and impact covering all aspects of graphene and related two-dimensional materials.