{"title":"PRIME REPRESENTATIONS IN THE HERNANDEZ-LECLERC CATEGORY: CLASSICAL DECOMPOSITIONS","authors":"Leon Barth, Deniz Kus","doi":"10.4153/s0008414x23000706","DOIUrl":null,"url":null,"abstract":"We use the dual functional realization of loop algebras to study the prime irreducible objects in the Hernandez-Leclerc category for the quantum affine algebra associated to $\\mathfrak{sl}_{n+1}$. When the HL category is realized as a monoidal categorification of a cluster algebra \\cite{HL10,HL13}, these representations correspond precisely to the cluster variables and the frozen variables are minimal affinizations. For any height function, we determine the classical decomposition of these representations with respect to the Hopf subalgebra $\\mathbf{U}_q(\\mathfrak{sl}_{n+1})$ and describe the graded multiplicities of their graded limits in terms of lattice points of convex polytopes. Combined with \\cite{BCMo15} we obtain the graded decomposition of stable prime Demazure modules in level two integrable highest weight representations of the corresponding affine Lie algebra.","PeriodicalId":55284,"journal":{"name":"Canadian Journal of Mathematics-Journal Canadien De Mathematiques","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics-Journal Canadien De Mathematiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x23000706","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
Abstract
We use the dual functional realization of loop algebras to study the prime irreducible objects in the Hernandez-Leclerc category for the quantum affine algebra associated to $\mathfrak{sl}_{n+1}$. When the HL category is realized as a monoidal categorification of a cluster algebra \cite{HL10,HL13}, these representations correspond precisely to the cluster variables and the frozen variables are minimal affinizations. For any height function, we determine the classical decomposition of these representations with respect to the Hopf subalgebra $\mathbf{U}_q(\mathfrak{sl}_{n+1})$ and describe the graded multiplicities of their graded limits in terms of lattice points of convex polytopes. Combined with \cite{BCMo15} we obtain the graded decomposition of stable prime Demazure modules in level two integrable highest weight representations of the corresponding affine Lie algebra.
期刊介绍:
The Canadian Journal of Mathematics (CJM) publishes original, high-quality research papers in all branches of mathematics. The Journal is a flagship publication of the Canadian Mathematical Society and has been published continuously since 1949. New research papers are published continuously online and collated into print issues six times each year.
To be submitted to the Journal, papers should be at least 18 pages long and may be written in English or in French. Shorter papers should be submitted to the Canadian Mathematical Bulletin.
Le Journal canadien de mathématiques (JCM) publie des articles de recherche innovants de grande qualité dans toutes les branches des mathématiques. Publication phare de la Société mathématique du Canada, il est publié en continu depuis 1949. En ligne, la revue propose constamment de nouveaux articles de recherche, puis les réunit dans des numéros imprimés six fois par année.
Les textes présentés au JCM doivent compter au moins 18 pages et être rédigés en anglais ou en français. C’est le Bulletin canadien de mathématiques qui reçoit les articles plus courts.