Finite Rank Perturbations of Heavy-Tailed Wigner Matrices

Pub Date : 2023-10-27 DOI:10.1142/s2010326323500119
Simona Diaconu
{"title":"Finite Rank Perturbations of Heavy-Tailed Wigner Matrices","authors":"Simona Diaconu","doi":"10.1142/s2010326323500119","DOIUrl":null,"url":null,"abstract":"One-rank perturbations of Wigner matrices have been closely studied: let [Formula: see text] with [Formula: see text] symmetric, [Formula: see text] i.i.d. with centered standard normal distributions, and [Formula: see text] It is well known [Formula: see text] the largest eigenvalue of [Formula: see text] has a phase transition at [Formula: see text]: when [Formula: see text] [Formula: see text] whereas for [Formula: see text] [Formula: see text] Under more general conditions, the limiting behavior of [Formula: see text] appropriately normalized, has also been established: it is normal if [Formula: see text] or the convolution of the law of [Formula: see text] and a Gaussian distribution if [Formula: see text] is concentrated on one entry. These convergences require a finite fourth moment, and this paper considers situations violating this condition. For symmetric distributions [Formula: see text] heavy-tailed with index [Formula: see text] the fluctuations are shown to be universal and dependent on [Formula: see text] but not on [Formula: see text] whereas a subfamily of the edge case [Formula: see text] displays features of both the light- and heavy-tailed regimes: two limiting laws emerge and depend on whether [Formula: see text] is localized, each presenting a continuous phase transition at [Formula: see text] respectively. These results build on our previous work which analyzes the asymptotic behavior of [Formula: see text] in the aforementioned subfamily.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2010326323500119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

One-rank perturbations of Wigner matrices have been closely studied: let [Formula: see text] with [Formula: see text] symmetric, [Formula: see text] i.i.d. with centered standard normal distributions, and [Formula: see text] It is well known [Formula: see text] the largest eigenvalue of [Formula: see text] has a phase transition at [Formula: see text]: when [Formula: see text] [Formula: see text] whereas for [Formula: see text] [Formula: see text] Under more general conditions, the limiting behavior of [Formula: see text] appropriately normalized, has also been established: it is normal if [Formula: see text] or the convolution of the law of [Formula: see text] and a Gaussian distribution if [Formula: see text] is concentrated on one entry. These convergences require a finite fourth moment, and this paper considers situations violating this condition. For symmetric distributions [Formula: see text] heavy-tailed with index [Formula: see text] the fluctuations are shown to be universal and dependent on [Formula: see text] but not on [Formula: see text] whereas a subfamily of the edge case [Formula: see text] displays features of both the light- and heavy-tailed regimes: two limiting laws emerge and depend on whether [Formula: see text] is localized, each presenting a continuous phase transition at [Formula: see text] respectively. These results build on our previous work which analyzes the asymptotic behavior of [Formula: see text] in the aforementioned subfamily.
分享
查看原文
重尾Wigner矩阵的有限秩摄动
魏格纳矩阵的阶扰动密切研究:让[公式:看到文本][公式:看到文本]对称,[公式:看到文本]i.i.d.集中标准正态分布,和[公式:看到文本]众所周知[公式:看到文本]最大的特征值公式:看到文本有相变(公式:看到文本):当[公式:看到文本][公式:看到文本]而对于[公式:看到文本][公式:在更一般的条件下,[公式:见文]的极限行为也得到了适当的归一化:如果[公式:见文]是正态的,如果[公式:见文]集中在一个条目上,则[公式:见文]与[公式:见文]定律的卷积是高斯分布。这些收敛需要有限的第四矩,本文考虑了违反这个条件的情况。对于对称分布[公式:见文],有索引的重尾[公式:见文],涨落是普遍的,依赖于[公式:见文],但不依赖于[公式:见文],而边缘情况的一个亚族[公式:见文]显示了轻尾和重尾状态的特征:出现了两个极限定律,并取决于[公式:见文]是否局部化,每个定律分别在[公式:见文]处呈现连续相变。这些结果建立在我们之前的工作基础上,该工作分析了上述子族中的[公式:见文本]的渐近行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信