Shifted Legendre Fractional Pseudo-spectral Integration Matrices for Solving Fractional Volterra Integro-Differential Equations and Abel's Integral Equations

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
M. Abdelhakem
{"title":"Shifted Legendre Fractional Pseudo-spectral Integration Matrices for Solving Fractional Volterra Integro-Differential Equations and Abel's Integral Equations","authors":"M. Abdelhakem","doi":"10.1142/s0218348x23401904","DOIUrl":null,"url":null,"abstract":"Shifted Legendre polynomials (SLPs) with the Riemann–Liouville fractional integral operator have been used to create a novel fractional integration tool. This tool will be called the fractional shifted Legendre integration matrix (FSL B-matrix). Two algorithms depending on this matrix are designed to solve two different types of integral equations. The first algorithm is to solve fractional Volterra integro-differential equations (VIDEs) with a non-singular kernel. The second algorithm is for Abel’s integral equations. In addition, error analysis for the spectral expansion has been proven to ensure the expansion’s convergence. Finally, several examples have been illustrated, including an application for the population model.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x23401904","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Shifted Legendre polynomials (SLPs) with the Riemann–Liouville fractional integral operator have been used to create a novel fractional integration tool. This tool will be called the fractional shifted Legendre integration matrix (FSL B-matrix). Two algorithms depending on this matrix are designed to solve two different types of integral equations. The first algorithm is to solve fractional Volterra integro-differential equations (VIDEs) with a non-singular kernel. The second algorithm is for Abel’s integral equations. In addition, error analysis for the spectral expansion has been proven to ensure the expansion’s convergence. Finally, several examples have been illustrated, including an application for the population model.
求解分数阶Volterra积分微分方程和Abel积分方程的移位Legendre分数阶伪谱积分矩阵
将移位勒让德多项式(slp)与Riemann-Liouville分数阶积分算子结合,建立了一种新的分数阶积分工具。这个工具将被称为分数移位勒让德积分矩阵(FSL - b矩阵)。基于该矩阵设计了两种算法来求解两种不同类型的积分方程。第一种算法是求解具有非奇异核的分数阶Volterra积分微分方程(VIDEs)。第二个算法是针对阿贝尔积分方程的。此外,对谱展开进行了误差分析,保证了谱展开的收敛性。最后,给出了几个例子,包括人口模型的一个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信