G. Pramod Kumar, K. R. Balasubramanian, Muralimohan Cheepu, Ravi Kumar Kottala
{"title":"CHARACTERIZATION OF CORROSION BEHAVIOR OF INCONEL 617 WELDED JOINTS USING CMT-GMAW MULTI-CONTROL WELDING","authors":"G. Pramod Kumar, K. R. Balasubramanian, Muralimohan Cheepu, Ravi Kumar Kottala","doi":"10.1142/s0218625x24500239","DOIUrl":null,"url":null,"abstract":"This work addressed the effect of CMT-GMAW multi-control welding of Inconel 617 alloy with different wire feed rates (8.9, 9.4, and 9.9 m/min) on the microstructure, hardness, and electrochemical properties. The weld joints are composed of columnar dendritic structure with cellular crystals. Electron backscattered diffraction (EBSD) study showed equiaxed dendrite at the center of weld metal with growth direction perpendicular to the fusion boundary. The weldments showed diffraction peaks at 43.53[Formula: see text], 50.12[Formula: see text], and 74.82[Formula: see text], and these peaks mainly represent gamma ([Formula: see text]) and gamma prime ([Formula: see text]) phases along with the carbide peaks of Ti (C, N), M[Formula: see text]C 6 and M 6 C. The Base metal (BM) had a lower hardness (232 ± 10 HV[Formula: see text]) and lower corrosion rate (0.212 mpy) than the weld joints. The increase in wire feed rate (WFR) results in the decrease of microhardness (267 ± 5 − 251 ± 6 HV[Formula: see text]) and increase in corrosion rate (1.833-28.140 mpy). The base metal exhibited higher potential ([Formula: see text]) and lower current density ([Formula: see text]) than the weld joints. As wire feed rate (WFR) increases, heat input increases; solidification time increases, grain boundaries coarsen, resulting in a lower grain boundary (GB) density, and hence increased carbide precipitation and segregation in weld zone leading to higher stable anodic current density, which caused corrosion resistance to deteriorating. The BM was more corrosion resistant than the weld joints. The metallurgical and physical changes caused by the welding process affect the corrosion resistance of the weld joints. This leads to the weld metal corroding faster than the base metal.","PeriodicalId":22011,"journal":{"name":"Surface Review and Letters","volume":"2020 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Review and Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218625x24500239","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This work addressed the effect of CMT-GMAW multi-control welding of Inconel 617 alloy with different wire feed rates (8.9, 9.4, and 9.9 m/min) on the microstructure, hardness, and electrochemical properties. The weld joints are composed of columnar dendritic structure with cellular crystals. Electron backscattered diffraction (EBSD) study showed equiaxed dendrite at the center of weld metal with growth direction perpendicular to the fusion boundary. The weldments showed diffraction peaks at 43.53[Formula: see text], 50.12[Formula: see text], and 74.82[Formula: see text], and these peaks mainly represent gamma ([Formula: see text]) and gamma prime ([Formula: see text]) phases along with the carbide peaks of Ti (C, N), M[Formula: see text]C 6 and M 6 C. The Base metal (BM) had a lower hardness (232 ± 10 HV[Formula: see text]) and lower corrosion rate (0.212 mpy) than the weld joints. The increase in wire feed rate (WFR) results in the decrease of microhardness (267 ± 5 − 251 ± 6 HV[Formula: see text]) and increase in corrosion rate (1.833-28.140 mpy). The base metal exhibited higher potential ([Formula: see text]) and lower current density ([Formula: see text]) than the weld joints. As wire feed rate (WFR) increases, heat input increases; solidification time increases, grain boundaries coarsen, resulting in a lower grain boundary (GB) density, and hence increased carbide precipitation and segregation in weld zone leading to higher stable anodic current density, which caused corrosion resistance to deteriorating. The BM was more corrosion resistant than the weld joints. The metallurgical and physical changes caused by the welding process affect the corrosion resistance of the weld joints. This leads to the weld metal corroding faster than the base metal.
期刊介绍:
This international journal is devoted to the elucidation of properties and processes that occur at the boundaries of materials. The scope of the journal covers a broad range of topics in experimental and theoretical studies of surfaces and interfaces. Both the physical and chemical properties are covered. The journal also places emphasis on emerging areas of cross-disciplinary research where new phenomena occur due to the presence of a surface or an interface. Representative areas include surface and interface structures; their electronic, magnetic and optical properties; dynamics and energetics; chemical reactions at surfaces; phase transitions, reconstruction, roughening and melting; defects, nucleation and growth; and new surface and interface characterization techniques.