Finite Direct Projective modules

IF 0.5 Q3 MATHEMATICS
Sonal Gupta, Ashok Ji Gupta
{"title":"Finite Direct Projective modules","authors":"Sonal Gupta, Ashok Ji Gupta","doi":"10.1142/s1793557123502182","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the notion of finite direct projective modules, which is a generalization of direct projective modules; counter-example is given. We study the properties of finite direct projective modules with respect of their summands. We characterized von Neumann regular rings in terms of the endomorphism ring of finite direct projective modules. Also, we find connections among Rickart modules, [Formula: see text] modules, direct projective modules, finite direct projective modules and endoregular modules.","PeriodicalId":45737,"journal":{"name":"Asian-European Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian-European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793557123502182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce the notion of finite direct projective modules, which is a generalization of direct projective modules; counter-example is given. We study the properties of finite direct projective modules with respect of their summands. We characterized von Neumann regular rings in terms of the endomorphism ring of finite direct projective modules. Also, we find connections among Rickart modules, [Formula: see text] modules, direct projective modules, finite direct projective modules and endoregular modules.
有限直射影模
本文引入了有限直射影模的概念,它是直射影模的推广;给出了反例。研究了有限直射影模关于其和的性质。我们用有限直射影模的自同态环来刻画冯·诺伊曼正则环。此外,我们还发现了Rickart模块、[公式:见文本]模块、直接投影模块、有限直接投影模块和内正则模块之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
169
期刊介绍: Asian-European Journal of Mathematics is an international journal which is devoted to original research in the field of pure and applied mathematics. The aim of the journal is to provide a medium by which new ideas can be discussed among researchers from diverse fields in mathematics. It publishes high quality research papers in the fields of contemporary pure and applied mathematics with a broad range of topics including algebra, analysis, topology, geometry, functional analysis, number theory, differential equations, operational research, combinatorics, theoretical statistics and probability, theoretical computer science and logic. Although the journal focuses on the original research articles, it also welcomes survey articles and short notes. All papers will be peer-reviewed within approximately four months.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信