Mohammad Assadizadeh, Nima Goodarz, Amir Hossein Mahdavi Pak, Seyyed Mohammad Hasan Haghayeghi, Maryam Azimzadeh Irani
{"title":"Structural investigation of Amphibalanus amphitrite cement proteins: an in-silico study","authors":"Mohammad Assadizadeh, Nima Goodarz, Amir Hossein Mahdavi Pak, Seyyed Mohammad Hasan Haghayeghi, Maryam Azimzadeh Irani","doi":"10.1680/jbibn.23.00008","DOIUrl":null,"url":null,"abstract":"Balanomorpha, commonly known as barnacles, are leading biofouling animals belonging to subclass Cirripedia that adhere durably to different submerged surfaces by utilizing a chiefly-proteinaceous cement. According to prior experiments, adhesion is most likely made possible by the self-assembling aggregates reputed as amyloid-like nanofibers. The secreted cement contains numerous proteins among which CP19k and CP20k are thought to have a substantial influence on the adhesion process. The molecular configuration and atomistic interactions that result in this firm cement are not yet completely understood. Herein, AI-based structure prediction and molecular dockings were used to inspect the potential role of AaCP19k and AaCP20k-1 of Amphibalanus amphitrite in the formation of amyloid-like nanofibers. The anticipated structure of AaCP19k was highly accurate and its β-sandwich folding had a close resemblance to cross-β motifs found in amyloid nanofibers. In the AaCP19k, β1-2 and β7-8 act as oligomerization sites where stable dimers and trimers can be assembled. These modeled oligomerization interfaces point to the self-assembly site through which fibrillization might happen. The structural flexibility of AaCP20k-1 yielded low-accurate models, but a conserved β-hairpin and an α-helix were evident with high confidence. These structural properties can be employed in prospective studies to develop bioadhesives and design anti-fouling substances.","PeriodicalId":48847,"journal":{"name":"Bioinspired Biomimetic and Nanobiomaterials","volume":"8 6","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspired Biomimetic and Nanobiomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jbibn.23.00008","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Balanomorpha, commonly known as barnacles, are leading biofouling animals belonging to subclass Cirripedia that adhere durably to different submerged surfaces by utilizing a chiefly-proteinaceous cement. According to prior experiments, adhesion is most likely made possible by the self-assembling aggregates reputed as amyloid-like nanofibers. The secreted cement contains numerous proteins among which CP19k and CP20k are thought to have a substantial influence on the adhesion process. The molecular configuration and atomistic interactions that result in this firm cement are not yet completely understood. Herein, AI-based structure prediction and molecular dockings were used to inspect the potential role of AaCP19k and AaCP20k-1 of Amphibalanus amphitrite in the formation of amyloid-like nanofibers. The anticipated structure of AaCP19k was highly accurate and its β-sandwich folding had a close resemblance to cross-β motifs found in amyloid nanofibers. In the AaCP19k, β1-2 and β7-8 act as oligomerization sites where stable dimers and trimers can be assembled. These modeled oligomerization interfaces point to the self-assembly site through which fibrillization might happen. The structural flexibility of AaCP20k-1 yielded low-accurate models, but a conserved β-hairpin and an α-helix were evident with high confidence. These structural properties can be employed in prospective studies to develop bioadhesives and design anti-fouling substances.
期刊介绍:
Bioinspired, biomimetic and nanobiomaterials are emerging as the most promising area of research within the area of biological materials science and engineering. The technological significance of this area is immense for applications as diverse as tissue engineering and drug delivery biosystems to biomimicked sensors and optical devices.
Bioinspired, Biomimetic and Nanobiomaterials provides a unique scholarly forum for discussion and reporting of structure sensitive functional properties of nature inspired materials.