Total 2-Rainbow Domination in Graphs: Complexity and Algorithms

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Manjay Kumar, P. Venkata Subba Reddy
{"title":"Total 2-Rainbow Domination in Graphs: Complexity and Algorithms","authors":"Manjay Kumar, P. Venkata Subba Reddy","doi":"10.1142/s0129054123500260","DOIUrl":null,"url":null,"abstract":"For a simple, undirected graph [Formula: see text] without isolated vertices, a function [Formula: see text] which satisfies the following two conditions is called a total 2-rainbow dominating function (T2RDF) of [Formula: see text]. (i) For all [Formula: see text], if [Formula: see text] then [Formula: see text] and (ii) Every [Formula: see text] with [Formula: see text] is adjacent to a vertex [Formula: see text] with [Formula: see text]. The weight of a T2RDF [Formula: see text] of [Formula: see text] is the value [Formula: see text]. The total 2-rainbow domination number is the minimum weight of a T2RDF on [Formula: see text] and is denoted by [Formula: see text]. The minimum total 2-rainbow domination problem (MT2RDP) is to find a T2RDF of minimum weight in the input graph. In this article, we show that the problem of deciding if [Formula: see text] has a T2RDF of weight at most [Formula: see text] for star convex bipartite graphs, comb convex bipartite graphs, split graphs and planar graphs is NP-complete. On the positive side, we show that MT2RDP is linear time solvable for threshold graphs, chain graphs and bounded tree-width graphs. On the approximation point of view, we show that MT2RDP cannot be approximated within [Formula: see text] for any [Formula: see text] unless [Formula: see text] and also propose [Formula: see text]-approximation algorithm for it. Further, we show that MT2RDP is APX-complete for graphs with maximum degree 4. Next, it is shown that domination problem and the total 2-rainbow domination problems are not equivalent in computational complexity aspects. Finally, an integer linear programming formulation for MT2RDP is presented.","PeriodicalId":50323,"journal":{"name":"International Journal of Foundations of Computer Science","volume":"10 4","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129054123500260","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

For a simple, undirected graph [Formula: see text] without isolated vertices, a function [Formula: see text] which satisfies the following two conditions is called a total 2-rainbow dominating function (T2RDF) of [Formula: see text]. (i) For all [Formula: see text], if [Formula: see text] then [Formula: see text] and (ii) Every [Formula: see text] with [Formula: see text] is adjacent to a vertex [Formula: see text] with [Formula: see text]. The weight of a T2RDF [Formula: see text] of [Formula: see text] is the value [Formula: see text]. The total 2-rainbow domination number is the minimum weight of a T2RDF on [Formula: see text] and is denoted by [Formula: see text]. The minimum total 2-rainbow domination problem (MT2RDP) is to find a T2RDF of minimum weight in the input graph. In this article, we show that the problem of deciding if [Formula: see text] has a T2RDF of weight at most [Formula: see text] for star convex bipartite graphs, comb convex bipartite graphs, split graphs and planar graphs is NP-complete. On the positive side, we show that MT2RDP is linear time solvable for threshold graphs, chain graphs and bounded tree-width graphs. On the approximation point of view, we show that MT2RDP cannot be approximated within [Formula: see text] for any [Formula: see text] unless [Formula: see text] and also propose [Formula: see text]-approximation algorithm for it. Further, we show that MT2RDP is APX-complete for graphs with maximum degree 4. Next, it is shown that domination problem and the total 2-rainbow domination problems are not equivalent in computational complexity aspects. Finally, an integer linear programming formulation for MT2RDP is presented.
图中的总2-彩虹支配:复杂性和算法
对于没有孤立顶点的简单无向图[公式:见文],满足以下两个条件的函数[公式:见文]称为[公式:见文]的总2-彩虹支配函数(T2RDF)。(i)对于所有[公式:见文],如果[公式:见文],则[公式:见文];(ii)每个[公式:见文]与[公式:见文]的顶点[公式:见文]相邻。[Formula: see text]的T2RDF [Formula: see text]的权重是值[Formula: see text]。总2彩虹控制数是一个T2RDF在[公式:见文本]上的最小权重,用[公式:见文本]表示。最小总2彩虹支配问题(MT2RDP)是在输入图中找到一个最小权重的T2RDF。在本文中,我们证明了判定星形凸二部图、梳状凸二部图、分裂图和平面图的[公式:见文]是否有最大权值的T2RDF的问题是np完全的。在积极的方面,我们证明了MT2RDP对于阈值图、链图和有界树宽度图是线性时间可解的。从近似的角度来看,我们表明MT2RDP不能在[公式:见文]内近似任何[公式:见文],除非[公式:见文],并提出[公式:见文]-近似算法。进一步,我们证明了MT2RDP对于最大度为4的图是apx完全的。其次,证明了控制问题和总2彩虹控制问题在计算复杂度方面是不等价的。最后,给出了MT2RDP的整数线性规划公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Foundations of Computer Science
International Journal of Foundations of Computer Science 工程技术-计算机:理论方法
CiteScore
1.60
自引率
12.50%
发文量
63
审稿时长
3 months
期刊介绍: The International Journal of Foundations of Computer Science is a bimonthly journal that publishes articles which contribute new theoretical results in all areas of the foundations of computer science. The theoretical and mathematical aspects covered include: - Algebraic theory of computing and formal systems - Algorithm and system implementation issues - Approximation, probabilistic, and randomized algorithms - Automata and formal languages - Automated deduction - Combinatorics and graph theory - Complexity theory - Computational biology and bioinformatics - Cryptography - Database theory - Data structures - Design and analysis of algorithms - DNA computing - Foundations of computer security - Foundations of high-performance computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信