Supercloseness of the local discontinuous Galerkin method for a singularly perturbed convection-diffusion problem

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yao Cheng, Shan Jiang, Martin Stynes
{"title":"Supercloseness of the local discontinuous Galerkin method for a singularly perturbed convection-diffusion problem","authors":"Yao Cheng, Shan Jiang, Martin Stynes","doi":"10.1090/mcom/3844","DOIUrl":null,"url":null,"abstract":"A singularly perturbed convection-diffusion problem posed on the unit square in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R squared\"> <mml:semantics> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, whose solution has exponential boundary layers, is solved numerically using the local discontinuous Galerkin (LDG) method with tensor-product piecewise polynomials of degree at most <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k greater-than 0\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">k&gt;0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on three families of layer-adapted meshes: Shishkin-type, Bakhvalov-Shishkin-type and Bakhvalov-type. On Shishkin-type meshes this method is known to be no greater than <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis upper N Superscript minus left-parenthesis k plus 1 slash 2 right-parenthesis Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>N</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>−<!-- − --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(N^{-(k+1/2)})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> accurate in the energy norm induced by the bilinear form of the weak formulation, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding=\"application/x-tex\">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> mesh intervals are used in each coordinate direction. (Note: all bounds in this abstract are uniform in the singular perturbation parameter and neglect logarithmic factors that will appear in our detailed analysis.) A delicate argument is used in this paper to establish <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis upper N Superscript minus left-parenthesis k plus 1 right-parenthesis Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>N</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>−<!-- − --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(N^{-(k+1)})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> energy-norm superconvergence on all three types of mesh for the difference between the LDG solution and a local Gauss-Radau projection of the true solution into the finite element space. This supercloseness property implies a new <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N Superscript minus left-parenthesis k plus 1 right-parenthesis\"> <mml:semantics> <mml:msup> <mml:mi>N</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>−<!-- − --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">N^{-(k+1)}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> bound for the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> error between the LDG solution on each type of mesh and the true solution of the problem; this bound is optimal (up to logarithmic factors). Numerical experiments confirm our theoretical results.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 4

Abstract

A singularly perturbed convection-diffusion problem posed on the unit square in R 2 \mathbb {R}^2 , whose solution has exponential boundary layers, is solved numerically using the local discontinuous Galerkin (LDG) method with tensor-product piecewise polynomials of degree at most k > 0 k>0 on three families of layer-adapted meshes: Shishkin-type, Bakhvalov-Shishkin-type and Bakhvalov-type. On Shishkin-type meshes this method is known to be no greater than O ( N ( k + 1 / 2 ) ) O(N^{-(k+1/2)}) accurate in the energy norm induced by the bilinear form of the weak formulation, where N N mesh intervals are used in each coordinate direction. (Note: all bounds in this abstract are uniform in the singular perturbation parameter and neglect logarithmic factors that will appear in our detailed analysis.) A delicate argument is used in this paper to establish O ( N ( k + 1 ) ) O(N^{-(k+1)}) energy-norm superconvergence on all three types of mesh for the difference between the LDG solution and a local Gauss-Radau projection of the true solution into the finite element space. This supercloseness property implies a new N ( k + 1 ) N^{-(k+1)} bound for the L 2 L^2 error between the LDG solution on each type of mesh and the true solution of the problem; this bound is optimal (up to logarithmic factors). Numerical experiments confirm our theoretical results.
奇异摄动对流扩散问题局部不连续Galerkin方法的超逼近性
利用局部不连续伽辽金(LDG)方法,用最大为k >次的张量积分段多项式数值求解了r2 \mathbb {R}^2中单位方阵上的奇摄动对流扩散问题,其解具有指数边界层;在三种层适应网格上:shishkin型,bakhvalov - shishkin型和bakhvalov型。在shishkin型网格上,已知该方法在弱公式双线性形式诱导的能量范数上不大于O(N−(k+1/2)) O(N^{-(k+1/2)}),其中在每个坐标方向上使用N N网格间隔。(注意:本文中所有的边界在奇异扰动参数下都是一致的,忽略了我们详细分析中会出现的对数因子。)对于LDG解与真解在有限元空间的局部高斯-拉道投影之间的差异,本文用一个微妙的论证在所有三种网格上建立了O(N−(k+1)) O(N^{-(k+1)})能量范数超收敛性。这种超接近性意味着每种网格上的LDG解与问题的真实解之间的l2l ^2误差有一个新的N−(k+1) N^{-(k+1)}界;这个边界是最优的(直到对数因子)。数值实验证实了我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信