Fixed Point Theorem: Variants, Affine Context and Some Consequences

de Araujo, Anderson Luis Albuquerque, Leite, Edir Junior Ferreira
{"title":"Fixed Point Theorem: Variants, Affine Context and Some Consequences","authors":"de Araujo, Anderson Luis Albuquerque, Leite, Edir Junior Ferreira","doi":"10.48550/arxiv.2305.03791","DOIUrl":null,"url":null,"abstract":"In this work, we will present variants Fixed Point Theorem for the affine and classical contexts, as a consequence of general Brouwer's Fixed Point Theorem. For instance, the affine results will allow working on affine balls, which are defined through the affine $L^{p}$ functional $\\mathcal{E}_{p,\\Omega}^p$ introduced by Lutwak, Yang and Zhang in the work $\\textit{Sharp affine $L_p$ Sobolev inequalities}$, J. Differential Geom. 62 (2002), 17-38 for $p > 1$ that is non convex and does not represent a norm in $\\mathbb{R}^m$. Moreover, we address results for discontinuous functional at a point. As an application, we study critical points of the sequence of affine functionals $\\Phi_m$ on a subspace $W_m$ of dimension $m$ given by \\[ \\Phi_m(u)=\\frac{1}{p}\\mathcal{E}_{p, \\Omega}^{p}(u) - \\frac{1}{\\alpha}\\|u\\|^{\\alpha}_{L^\\alpha(\\Omega)}- \\int_{\\Omega}f(x)u dx, \\] where $1<\\alpha<p$, $[W_m]_{m \\in \\mathbb{N}}$ is dense in $W^{1,p}_0(\\Omega)$ and $f\\in L^{p'}(\\Omega)$, with $\\frac{1}{p}+\\frac{1}{p'}=1$.","PeriodicalId":496270,"journal":{"name":"arXiv (Cornell University)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv (Cornell University)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arxiv.2305.03791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we will present variants Fixed Point Theorem for the affine and classical contexts, as a consequence of general Brouwer's Fixed Point Theorem. For instance, the affine results will allow working on affine balls, which are defined through the affine $L^{p}$ functional $\mathcal{E}_{p,\Omega}^p$ introduced by Lutwak, Yang and Zhang in the work $\textit{Sharp affine $L_p$ Sobolev inequalities}$, J. Differential Geom. 62 (2002), 17-38 for $p > 1$ that is non convex and does not represent a norm in $\mathbb{R}^m$. Moreover, we address results for discontinuous functional at a point. As an application, we study critical points of the sequence of affine functionals $\Phi_m$ on a subspace $W_m$ of dimension $m$ given by \[ \Phi_m(u)=\frac{1}{p}\mathcal{E}_{p, \Omega}^{p}(u) - \frac{1}{\alpha}\|u\|^{\alpha}_{L^\alpha(\Omega)}- \int_{\Omega}f(x)u dx, \] where $1<\alpha
不动点定理:变体、仿射上下文和一些结果
在这项工作中,我们将提出仿射和经典背景下不动点定理的变体,作为一般browwer不动点定理的结果。例如,仿射结果将允许在仿射球上工作,它是通过Lutwak, Yang和Zhang在工作$\textit{Sharp affine $ L_p $ Sobolev inequalities}$, J. Differential Geom. 62(2002), 17-38中引入的仿射$L^{p}$泛函$\mathcal{E}_{p,\Omega}^p$定义的,对于$p > 1$是非凸的,不代表$\mathbb{R}^m$中的范数。此外,我们还处理了点上不连续泛函的结果。作为应用,我们研究了\[ \Phi_m(u)=\frac{1}{p}\mathcal{E}_{p, \Omega}^{p}(u) - \frac{1}{\alpha}\|u\|^{\alpha}_{L^\alpha(\Omega)}- \int_{\Omega}f(x)u dx, \]给出的$m$维数的子空间$W_m$上仿射泛函序列$\Phi_m$的临界点,其中$1<\alpha
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信