Synthesizing Computable Functions from Rational Specifications Over Infinite Words

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Emmanuel Filiot, Sarah Winter
{"title":"Synthesizing Computable Functions from Rational Specifications Over Infinite Words","authors":"Emmanuel Filiot, Sarah Winter","doi":"10.1142/s012905412348009x","DOIUrl":null,"url":null,"abstract":"The synthesis problem asks to automatically generate, if it exists, an algorithm from a specification of correct input-output pairs. In this paper, we consider the synthesis of computable functions of infinite words, for a classical Turing computability notion over infinite inputs. We consider specifications which are rational relations of infinite words, i.e., specifications defined by non-deterministic parity transducers. We prove that the synthesis problem of computable functions from rational specifications is undecidable. We provide an incomplete but sound reduction to some parity game, such that if Eve wins the game, then the rational specification is realizable by a computable function. We prove that this function is even computable by a deterministic two-way transducer. We provide a sufficient condition under which the latter game reduction is complete. This entails the decidability of the synthesis problem of computable functions, which we proved to be ExpTime-complete, for a large subclass of rational specifications, namely deterministic rational specifications. This subclass contains the class of automatic relations over infinite words, a yardstick in reactive synthesis.","PeriodicalId":50323,"journal":{"name":"International Journal of Foundations of Computer Science","volume":"10 3","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s012905412348009x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The synthesis problem asks to automatically generate, if it exists, an algorithm from a specification of correct input-output pairs. In this paper, we consider the synthesis of computable functions of infinite words, for a classical Turing computability notion over infinite inputs. We consider specifications which are rational relations of infinite words, i.e., specifications defined by non-deterministic parity transducers. We prove that the synthesis problem of computable functions from rational specifications is undecidable. We provide an incomplete but sound reduction to some parity game, such that if Eve wins the game, then the rational specification is realizable by a computable function. We prove that this function is even computable by a deterministic two-way transducer. We provide a sufficient condition under which the latter game reduction is complete. This entails the decidability of the synthesis problem of computable functions, which we proved to be ExpTime-complete, for a large subclass of rational specifications, namely deterministic rational specifications. This subclass contains the class of automatic relations over infinite words, a yardstick in reactive synthesis.
从无限字上的有理规范合成可计算函数
综合问题要求从正确的输入输出对的规范中自动生成算法(如果存在的话)。本文考虑了无限输入上的经典图灵可计算概念的无限词可计算函数的综合。我们考虑无限字的理性关系规范,即由非确定性奇偶传感器定义的规范。证明了可计算函数由有理规范合成的问题是不可判定的。我们为一些奇偶性游戏提供了一个不完整但合理的简化,这样如果Eve赢得了游戏,那么理性规范就可以通过一个可计算函数实现。我们证明了这个函数甚至可以用一个确定性的双向传感器来计算。给出了后一博弈约简完成的充分条件。这需要可计算函数的综合问题的可判决性,我们证明了它是exptime完备的,对于一个大的有理规范子类,即确定性有理规范。这个子类包含无限单词上的自动关系类,这是反应性合成中的一个标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Foundations of Computer Science
International Journal of Foundations of Computer Science 工程技术-计算机:理论方法
CiteScore
1.60
自引率
12.50%
发文量
63
审稿时长
3 months
期刊介绍: The International Journal of Foundations of Computer Science is a bimonthly journal that publishes articles which contribute new theoretical results in all areas of the foundations of computer science. The theoretical and mathematical aspects covered include: - Algebraic theory of computing and formal systems - Algorithm and system implementation issues - Approximation, probabilistic, and randomized algorithms - Automata and formal languages - Automated deduction - Combinatorics and graph theory - Complexity theory - Computational biology and bioinformatics - Cryptography - Database theory - Data structures - Design and analysis of algorithms - DNA computing - Foundations of computer security - Foundations of high-performance computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信